New C version of the Opus comparison tool
authorTimothy Terriberry <tterriberry@mozilla.com>
Thu, 16 Jun 2011 19:54:20 +0000 (15:54 -0400)
committerJean-Marc Valin <jean-marc.valin@usherbrooke.ca>
Fri, 17 Jun 2011 02:58:55 +0000 (22:58 -0400)
doc/build_draft.sh
doc/draft-ietf-codec-opus.xml
doc/opus_compare.c [new file with mode: 0644]

index 3035adc..292571b 100755 (executable)
@@ -35,13 +35,13 @@ tar czf opus_source.tar.gz "${destdir}"
 echo building base64 version
 cat opus_source.tar.gz| base64 -w 66 | sed 's/^/###/' > opus_source.base64
 
-echo '<figure>' > opus_compare_escaped.m
-echo '<artwork>' >> opus_compare_escaped.m
-echo '<![CDATA[' >> opus_compare_escaped.m
-cat opus_compare.m >> opus_compare_escaped.m
-echo ']]>' >> opus_compare_escaped.m
-echo '</artwork>' >> opus_compare_escaped.m
-echo '</figure>' >> opus_compare_escaped.m
+echo '<figure>' > opus_compare_escaped.c
+echo '<artwork>' >> opus_compare_escaped.c
+echo '<![CDATA[' >> opus_compare_escaped.c
+cat opus_compare.c >> opus_compare_escaped.c
+echo ']]>' >> opus_compare_escaped.c
+echo '</artwork>' >> opus_compare_escaped.c
+echo '</figure>' >> opus_compare_escaped.c
 
 echo running xml2rfc
 xml2rfc draft-ietf-codec-opus.xml
index 89209ed..7e8b403 100644 (file)
@@ -53,7 +53,7 @@
 </address>
 </author>
 
-<date day="31" month="March" year="2011" />
+<date day="16" month="June" year="2011" />
 
 <area>General</area>
 
@@ -4251,9 +4251,9 @@ Development snapshots are provided at
 
 </section>
 
-<section anchor="opus-compare" title="opus_compare.m">
+<section anchor="opus-compare" title="opus_compare.c">
 <t>
-<?rfc include="opus_compare_escaped.m"?>
+<?rfc include="opus_compare_escaped.c"?>
 </t>
 </section>
 
diff --git a/doc/opus_compare.c b/doc/opus_compare.c
new file mode 100644 (file)
index 0000000..31ebedc
--- /dev/null
@@ -0,0 +1,284 @@
+#include <stdio.h>
+#include <stdlib.h>
+#include <math.h>
+#include <string.h>
+
+#define OPUS_PI (3.14159265F)
+
+#define OPUS_MIN(_x,_y)      ((_x)<(_y)?(_x):(_y))
+#define OPUS_MAX(_x,_y)      ((_x)>(_y)?(_x):(_y))
+#define OPUS_CLAMP(_a,_b,_c) OPUS_MAX(_a,OPUS_MIN(_b,_c))
+#define OPUS_COSF(_x)        ((float)cos(_x))
+#define OPUS_SINF(_x)        ((float)sin(_x))
+#define OPUS_SQRTF(_x)       ((float)sqrt(_x))
+#define OPUS_LOG10F(_x)      ((float)log10(_x))
+
+static void *check_alloc(void *_ptr){
+  if(_ptr==NULL){
+    fprintf(stderr,"Out of memory.\n");
+    exit(EXIT_FAILURE);
+  }
+  return _ptr;
+}
+
+static void *opus_malloc(size_t _size){
+  return check_alloc(malloc(_size));
+}
+
+static void *opus_realloc(void *_ptr,size_t _size){
+  return check_alloc(realloc(_ptr,_size));
+}
+
+static size_t read_pcm16(float **_samples,FILE *_fin,
+                         int _nchannels){
+  unsigned char  buf[1024];
+  float         *samples;
+  size_t         nsamples;
+  size_t         csamples;
+  size_t         xi;
+  size_t         nread;
+  samples=NULL;
+  nsamples=csamples=0;
+  for(;;){
+    nread=fread(buf,2*_nchannels,1024/(2*_nchannels),_fin);
+    if(nread<=0)break;
+    if(nsamples+nread>csamples){
+      do csamples=csamples<<1|1;
+      while(nsamples+nread>csamples);
+      samples=(float *)opus_realloc(samples,
+       _nchannels*csamples*sizeof(*samples));
+    }
+    for(xi=0;xi<nread;xi++){
+      int ci;
+      for(ci=0;ci<_nchannels;ci++){
+        int s;
+        s=buf[2*(xi*_nchannels+ci)+1]<<8|buf[2*(xi*_nchannels+ci)];
+        s=((s&0xFFFF)^0x8000)-0x8000;
+        samples[(nsamples+xi)*_nchannels+ci]=s;
+      }
+    }
+    nsamples+=nread;
+  }
+  *_samples=(float *)opus_realloc(samples,
+                     _nchannels*nsamples*sizeof(*samples));
+  return nsamples;
+}
+
+static void band_energy(float *_out,const int *_bands,int _nbands,
+ const float *_in,int _nchannels,size_t _nframes,int _window_sz,
+ int _step){
+  float *window;
+  float *x;
+  float *c;
+  float *s;
+  size_t xi;
+  int    xj;
+  window=(float *)opus_malloc((3+_nchannels)*_window_sz
+          *sizeof(*window));
+  c=window+_window_sz;
+  s=c+_window_sz;
+  x=s+_window_sz;
+  for(xj=0;xj<_window_sz;xj++){
+    window[xj]=0.5F-0.5F*OPUS_COSF((2*OPUS_PI/(_window_sz-1))*xj);
+  }
+  for(xj=0;xj<_window_sz;xj++)
+      c[xj]=OPUS_COSF((2*OPUS_PI/_window_sz)*xj);
+  for(xj=0;xj<_window_sz;xj++)
+      s[xj]=OPUS_SINF((2*OPUS_PI/_window_sz)*xj);
+  for(xi=0;xi<_nframes;xi++){
+    int ci;
+    int xk;
+    int bi;
+    for(ci=0;ci<_nchannels;ci++){
+      for(xk=0;xk<_window_sz;xk++){
+        x[ci*_window_sz+xk]=window[xk]
+                           *_in[(xi*_step+xk)*_nchannels+ci];
+      }
+    }
+    for(bi=xj=0;bi<_nbands;bi++){
+      float e2;
+      e2=0;
+      for(;xj<_bands[bi+1];xj++){
+        float p;
+        p=0;
+        for(ci=0;ci<_nchannels;ci++){
+          float re;
+          float im;
+          int   ti;
+          ti=0;
+          re=im=0;
+          for(xk=0;xk<_window_sz;xk++){
+            re+=c[ti]*x[ci*_window_sz+xk];
+            im-=s[ti]*x[ci*_window_sz+xk];
+            ti+=xj;
+            if(ti>=_window_sz)ti-=_window_sz;
+          }
+          p+=OPUS_SQRTF(re*re+im*im);
+        }
+        p*=(1.0F/_nchannels);
+        e2+=p*p;
+      }
+      _out[xi*_nbands+bi]=e2/(_bands[bi+1]-_bands[bi])+1;
+    }
+  }
+  free(window);
+}
+
+static int cmp_float(const void *_a,const void *_b){
+  float a;
+  float b;
+  a=*(const float *)_a;
+  b=*(const float *)_b;
+  return (a>b)-(a<b);
+}
+
+#define NBANDS (21)
+
+/*Bands on which we compute the pseudo-NMR (Bark-derived
+  CELT bands).*/
+static const int BANDS[NBANDS+1]={
+  0,2,4,6,8,10,12,14,16,20,24,28,32,40,48,56,68,80,96,120,156,200
+};
+
+/*Per-band NMR threshold.*/
+static const float NMR_THRESH[NBANDS]={
+85113.804F,72443.596F,61659.5F,  52480.746F,44668.359F,38018.940F,
+32359.366F,27542.287F,23442.288F,19952.623F,16982.437F,14454.398F,
+12302.688F,10471.285F, 8912.5094F,7585.7758F,6456.5423F,5495.4087F,
+ 4677.3514F,3981.0717F,3388.4416F
+};
+
+/*Noise floor.*/
+static const float NOISE_FLOOR[NBANDS]={
+8.7096359F,7.5857758F,6.6069345F,5.7543994F,5.0118723F,4.3651583F,
+3.8018940F,3.3113112F,2.8840315F,2.5118864F,2.1877616F,1.9054607F,
+1.6595869F,1.4454398F,1.2589254F,1.0964782F,0.95499259F,0.83176377F,
+0.72443596F,0.63095734F,0.54954087F
+};
+
+#define TEST_WIN_SIZE (480)
+#define TEST_WIN_STEP (TEST_WIN_SIZE>>1)
+
+int main(int _argc,const char **_argv){
+  FILE   *fin1;
+  FILE   *fin2;
+  float  *x;
+  float  *y;
+  float  *xb;
+  float  *eb;
+  float  *nmr;
+  float   thresh;
+  float   mismatch;
+  float   err;
+  float   nmr_sum;
+  size_t  weight;
+  size_t  xlength;
+  size_t  ylength;
+  size_t  nframes;
+  size_t  xi;
+  int     bi;
+  int     nchannels;
+  if(_argc<3||_argc>4){
+    fprintf(stderr,"Usage: %s [-s] <file1.sw> <file2.sw>\n",
+            _argv[0]);
+    return EXIT_FAILURE;
+  }
+  nchannels=1;
+  if(strcmp(_argv[1],"-s")==0)nchannels=2;
+  fin1=fopen(_argv[nchannels],"rb");
+  if(fin1==NULL){
+    fprintf(stderr,"Error opening '%s'.\n",_argv[nchannels]);
+    return EXIT_FAILURE;
+  }
+  fin2=fopen(_argv[nchannels+1],"rb");
+  if(fin2==NULL){
+    fprintf(stderr,"Error opening '%s'.\n",_argv[nchannels+1]);
+    fclose(fin1);
+    return EXIT_FAILURE;
+  }
+  /*Read in the data and allocate scratch space.*/
+  xlength=read_pcm16(&x,fin1,nchannels);
+  fclose(fin1);
+  ylength=read_pcm16(&y,fin2,nchannels);
+  fclose(fin2);
+  if(xlength!=ylength){
+    fprintf(stderr,"Sample counts do not match (%lu!=%lu).\n",
+     (unsigned long)xlength,(unsigned long)ylength);
+    return EXIT_FAILURE;
+  }
+  if(xlength<TEST_WIN_SIZE){
+    fprintf(stderr,"Insufficient sample data (%lu<%i).\n",
+     (unsigned long)xlength,TEST_WIN_SIZE);
+    return EXIT_FAILURE;
+  }
+  nframes=(xlength-TEST_WIN_SIZE+TEST_WIN_STEP)/TEST_WIN_STEP;
+  xb=(float *)opus_malloc(nframes*NBANDS*sizeof(*xb));
+  eb=(float *)opus_malloc(nframes*NBANDS*sizeof(*eb));
+  nmr=(float *)opus_malloc(nframes*NBANDS*sizeof(*nmr));
+  /*Compute the error signal.*/
+  for(xi=0;xi<xlength*nchannels;xi++){
+    err=x[xi]-y[xi];
+    y[xi]=err-OPUS_CLAMP(-1,err,1);
+  }
+  /*Compute the per-band spectral energy of the original signal
+    and the error.*/
+  band_energy(xb,BANDS,NBANDS,x,nchannels,nframes,
+          TEST_WIN_SIZE,TEST_WIN_STEP);
+  free(x);
+  band_energy(eb,BANDS,NBANDS,y,nchannels,nframes,
+          TEST_WIN_SIZE,TEST_WIN_STEP);
+  free(y);
+  nmr_sum=0;
+  for(xi=0;xi<nframes;xi++){
+    /*Frequency masking (low to high): 10 dB/Bark slope.*/
+    for(bi=1;bi<NBANDS;bi++)
+        xb[xi*NBANDS+bi]+=0.1F*xb[xi*NBANDS+bi-1];
+    /*Frequency masking (high to low): 15 dB/Bark slope.*/
+    for(bi=NBANDS-1;bi-->0;)
+        xb[xi*NBANDS+bi]+=0.03F*xb[xi*NBANDS+bi+1];
+    if(xi>0){
+      /*Temporal masking: 5 dB/5ms slope.*/
+      for(bi=0;bi<NBANDS;bi++)
+          xb[xi*NBANDS+bi]+=0.3F*xb[(xi-1)*NBANDS+bi];
+    }
+    /*Compute NMR.*/
+    for(bi=0;bi<NBANDS;bi++){
+      nmr[xi*NBANDS+bi]=xb[xi*NBANDS+bi]/eb[xi*NBANDS+bi];
+      nmr_sum+=10*OPUS_LOG10F(nmr[xi*NBANDS+bi]);
+    }
+  }
+  /*Find the 90th percentile of the errors.*/
+  memcpy(xb,eb,nframes*NBANDS*sizeof(*xb));
+  qsort(xb,nframes*NBANDS,sizeof(*xb),cmp_float);
+  thresh=xb[(9*nframes*NBANDS+5)/10];
+  free(xb);
+  /*Compute the mismatch.*/
+  mismatch=0;
+  weight=0;
+  for(xi=0;xi<nframes;xi++){
+    for(bi=0;bi<NBANDS;bi++){
+      if(eb[xi*NBANDS+bi]>thresh){
+        mismatch+=NMR_THRESH[bi]/nmr[xi*NBANDS+bi];
+        weight++;
+      }
+    }
+  }
+  free(nmr);
+  free(eb);
+  printf("Average pseudo-NMR: %3.2f dB\n",nmr_sum/(nframes*NBANDS));
+  if(weight<=0){
+    err=-100;
+    printf("Mismatch level: below noise floor\n");
+  }
+  else{
+    err=10*OPUS_LOG10F(mismatch/weight);
+    printf("Weighted mismatch: %3.2f dB\n",err);
+  }
+  printf("\n");
+  if(err<0){
+    printf("**Decoder PASSES test (mismatch < 0 dB)\n");
+    return EXIT_SUCCESS;
+  }
+  printf("**Decoder FAILS test (mismatch >= 0 dB)\n");
+  return EXIT_FAILURE;
+}