Splits out the CELT encoder and decoder
authorJean-Marc Valin <jmvalin@jmvalin.ca>
Thu, 8 Nov 2012 14:42:27 +0000 (09:42 -0500)
committerJean-Marc Valin <jmvalin@jmvalin.ca>
Thu, 8 Nov 2012 14:42:27 +0000 (09:42 -0500)
celt/celt.c
celt/celt.h
celt/celt_decoder.c [new file with mode: 0644]
celt/celt_encoder.c [new file with mode: 0644]
celt_sources.mk
include/opus_custom.h

index b29d0db..aaab966 100644 (file)
 #include "celt_lpc.h"
 #include "vq.h"
 
-#ifndef OPUS_VERSION
-#define OPUS_VERSION "unknown"
-#endif
-
-#ifdef CUSTOM_MODES
-#define OPUS_CUSTOM_NOSTATIC
-#else
-#define OPUS_CUSTOM_NOSTATIC static inline
-#endif
-
-static const unsigned char trim_icdf[11] = {126, 124, 119, 109, 87, 41, 19, 9, 4, 2, 0};
-/* Probs: NONE: 21.875%, LIGHT: 6.25%, NORMAL: 65.625%, AGGRESSIVE: 6.25% */
-static const unsigned char spread_icdf[4] = {25, 23, 2, 0};
-
-static const unsigned char tapset_icdf[3]={2,1,0};
-
-#ifdef CUSTOM_MODES
-static const unsigned char toOpusTable[20] = {
-      0xE0, 0xE8, 0xF0, 0xF8,
-      0xC0, 0xC8, 0xD0, 0xD8,
-      0xA0, 0xA8, 0xB0, 0xB8,
-      0x00, 0x00, 0x00, 0x00,
-      0x80, 0x88, 0x90, 0x98,
-};
-
-static const unsigned char fromOpusTable[16] = {
-      0x80, 0x88, 0x90, 0x98,
-      0x40, 0x48, 0x50, 0x58,
-      0x20, 0x28, 0x30, 0x38,
-      0x00, 0x08, 0x10, 0x18
-};
-
-static inline int toOpus(unsigned char c)
-{
-   int ret=0;
-   if (c<0xA0)
-      ret = toOpusTable[c>>3];
-   if (ret == 0)
-      return -1;
-   else
-      return ret|(c&0x7);
-}
-
-static inline int fromOpus(unsigned char c)
-{
-   if (c<0x80)
-      return -1;
-   else
-      return fromOpusTable[(c>>3)-16] | (c&0x7);
-}
-#endif /* CUSTOM_MODES */
-
-#define COMBFILTER_MAXPERIOD 1024
-#define COMBFILTER_MINPERIOD 15
 
-static int resampling_factor(opus_int32 rate)
+int resampling_factor(opus_int32 rate)
 {
    int ret;
    switch (rate)
@@ -135,479 +81,8 @@ static int resampling_factor(opus_int32 rate)
    return ret;
 }
 
-/** Encoder state
- @brief Encoder state
- */
-struct OpusCustomEncoder {
-   const OpusCustomMode *mode;     /**< Mode used by the encoder */
-   int overlap;
-   int channels;
-   int stream_channels;
-
-   int force_intra;
-   int clip;
-   int disable_pf;
-   int complexity;
-   int upsample;
-   int start, end;
-
-   opus_int32 bitrate;
-   int vbr;
-   int signalling;
-   int constrained_vbr;      /* If zero, VBR can do whatever it likes with the rate */
-   int loss_rate;
-   int lsb_depth;
-
-   /* Everything beyond this point gets cleared on a reset */
-#define ENCODER_RESET_START rng
-
-   opus_uint32 rng;
-   int spread_decision;
-   opus_val32 delayedIntra;
-   int tonal_average;
-   int lastCodedBands;
-   int hf_average;
-   int tapset_decision;
-
-   int prefilter_period;
-   opus_val16 prefilter_gain;
-   int prefilter_tapset;
-#ifdef RESYNTH
-   int prefilter_period_old;
-   opus_val16 prefilter_gain_old;
-   int prefilter_tapset_old;
-#endif
-   int consec_transient;
-   AnalysisInfo analysis;
-
-   opus_val32 preemph_memE[2];
-   opus_val32 preemph_memD[2];
-
-   /* VBR-related parameters */
-   opus_int32 vbr_reservoir;
-   opus_int32 vbr_drift;
-   opus_int32 vbr_offset;
-   opus_int32 vbr_count;
-   opus_val16 overlap_max;
-   opus_val16 stereo_saving;
-   int intensity;
-
-#ifdef RESYNTH
-   /* +MAX_PERIOD/2 to make space for overlap */
-   celt_sig syn_mem[2][2*MAX_PERIOD+MAX_PERIOD/2];
-#endif
-
-   celt_sig in_mem[1]; /* Size = channels*mode->overlap */
-   /* celt_sig prefilter_mem[],  Size = channels*COMBFILTER_MAXPERIOD */
-   /* opus_val16 oldBandE[],     Size = channels*mode->nbEBands */
-   /* opus_val16 oldLogE[],      Size = channels*mode->nbEBands */
-   /* opus_val16 oldLogE2[],     Size = channels*mode->nbEBands */
-};
-
-int celt_encoder_get_size(int channels)
-{
-   CELTMode *mode = opus_custom_mode_create(48000, 960, NULL);
-   return opus_custom_encoder_get_size(mode, channels);
-}
-
-OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_get_size(const CELTMode *mode, int channels)
-{
-   int size = sizeof(struct CELTEncoder)
-         + (channels*mode->overlap-1)*sizeof(celt_sig)    /* celt_sig in_mem[channels*mode->overlap]; */
-         + channels*COMBFILTER_MAXPERIOD*sizeof(celt_sig) /* celt_sig prefilter_mem[channels*COMBFILTER_MAXPERIOD]; */
-         + 3*channels*mode->nbEBands*sizeof(opus_val16);  /* opus_val16 oldBandE[channels*mode->nbEBands]; */
-                                                          /* opus_val16 oldLogE[channels*mode->nbEBands]; */
-                                                          /* opus_val16 oldLogE2[channels*mode->nbEBands]; */
-   return size;
-}
-
-#ifdef CUSTOM_MODES
-CELTEncoder *opus_custom_encoder_create(const CELTMode *mode, int channels, int *error)
-{
-   int ret;
-   CELTEncoder *st = (CELTEncoder *)opus_alloc(opus_custom_encoder_get_size(mode, channels));
-   /* init will handle the NULL case */
-   ret = opus_custom_encoder_init(st, mode, channels);
-   if (ret != OPUS_OK)
-   {
-      opus_custom_encoder_destroy(st);
-      st = NULL;
-   }
-   if (error)
-      *error = ret;
-   return st;
-}
-#endif /* CUSTOM_MODES */
-
-int celt_encoder_init(CELTEncoder *st, opus_int32 sampling_rate, int channels)
-{
-   int ret;
-   ret = opus_custom_encoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels);
-   if (ret != OPUS_OK)
-      return ret;
-   st->upsample = resampling_factor(sampling_rate);
-   return OPUS_OK;
-}
-
-OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_init(CELTEncoder *st, const CELTMode *mode, int channels)
-{
-   if (channels < 0 || channels > 2)
-      return OPUS_BAD_ARG;
-
-   if (st==NULL || mode==NULL)
-      return OPUS_ALLOC_FAIL;
-
-   OPUS_CLEAR((char*)st, opus_custom_encoder_get_size(mode, channels));
-
-   st->mode = mode;
-   st->overlap = mode->overlap;
-   st->stream_channels = st->channels = channels;
-
-   st->upsample = 1;
-   st->start = 0;
-   st->end = st->mode->effEBands;
-   st->signalling = 1;
-
-   st->constrained_vbr = 1;
-   st->clip = 1;
-
-   st->bitrate = OPUS_BITRATE_MAX;
-   st->vbr = 0;
-   st->force_intra  = 0;
-   st->complexity = 5;
-   st->lsb_depth=24;
-
-   opus_custom_encoder_ctl(st, OPUS_RESET_STATE);
-
-   return OPUS_OK;
-}
-
-#ifdef CUSTOM_MODES
-void opus_custom_encoder_destroy(CELTEncoder *st)
-{
-   opus_free(st);
-}
-#endif /* CUSTOM_MODES */
-
-static inline opus_val16 SIG2WORD16(celt_sig x)
-{
-#ifdef FIXED_POINT
-   x = PSHR32(x, SIG_SHIFT);
-   x = MAX32(x, -32768);
-   x = MIN32(x, 32767);
-   return EXTRACT16(x);
-#else
-   return (opus_val16)x;
-#endif
-}
-
-static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int C,
-                              opus_val16 *tf_estimate, int *tf_chan)
-{
-   int i;
-   VARDECL(opus_val16, tmp);
-   opus_val32 mem0,mem1;
-   int is_transient = 0;
-   opus_int32 mask_metric = 0;
-   int c;
-   int tf_max;
-   /* Table of 6*64/x, trained on real data to minimize the average error */
-   static const unsigned char inv_table[128] = {
-         255,255,156,110, 86, 70, 59, 51, 45, 40, 37, 33, 31, 28, 26, 25,
-          23, 22, 21, 20, 19, 18, 17, 16, 16, 15, 15, 14, 13, 13, 12, 12,
-          12, 12, 11, 11, 11, 10, 10, 10,  9,  9,  9,  9,  9,  9,  8,  8,
-           8,  8,  8,  7,  7,  7,  7,  7,  7,  6,  6,  6,  6,  6,  6,  6,
-           6,  6,  6,  6,  6,  6,  6,  6,  6,  5,  5,  5,  5,  5,  5,  5,
-           5,  5,  5,  5,  5,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,
-           4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  3,  3,
-           3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  2,
-   };
-   SAVE_STACK;
-   ALLOC(tmp, len, opus_val16);
-
-   tf_max = 0;
-   for (c=0;c<C;c++)
-   {
-      opus_val32 mean;
-      opus_int32 unmask=0;
-      opus_val32 norm;
-      mem0=0;
-      mem1=0;
-      /* High-pass filter: (1 - 2*z^-1 + z^-2) / (1 - z^-1 + .5*z^-2) */
-      for (i=0;i<len;i++)
-      {
-         opus_val32 x,y;
-         x = SHR32(in[i+c*len],SIG_SHIFT);
-         y = ADD32(mem0, x);
-#ifdef FIXED_POINT
-         mem0 = mem1 + y - SHL32(x,1);
-         mem1 = x - SHR32(y,1);
-#else
-         mem0 = mem1 + y - 2*x;
-         mem1 = x - .5f*y;
-#endif
-         tmp[i] = EXTRACT16(SHR32(y,2));
-         /*printf("%f ", tmp[i]);*/
-      }
-      /*printf("\n");*/
-      /* First few samples are bad because we don't propagate the memory */
-      for (i=0;i<12;i++)
-         tmp[i] = 0;
-
-#ifdef FIXED_POINT
-      /* Normalize tmp to max range */
-      {
-         int shift=0;
-         shift = 14-celt_ilog2(1+celt_maxabs16(tmp, len));
-         if (shift!=0)
-         {
-            for (i=0;i<len;i++)
-               tmp[i] = SHL16(tmp[i], shift);
-         }
-      }
-#endif
-
-      mean=0;
-      mem0=0;
-      /*  Grouping by two to reduce complexity */
-      len/=2;
-      /* Forward pass to compute the post-echo threshold*/
-      for (i=0;i<len;i++)
-      {
-         opus_val16 x2 = PSHR32(MULT16_16(tmp[2*i],tmp[2*i]) + MULT16_16(tmp[2*i+1],tmp[2*i+1]),16);
-         mean += x2;
-#ifdef FIXED_POINT
-         /* FIXME: Use PSHR16() instead */
-         tmp[i] = mem0 + PSHR32(x2-mem0,4);
-#else
-         tmp[i] = mem0 + MULT16_16_P15(QCONST16(.0625f,15),x2-mem0);
-#endif
-         mem0 = tmp[i];
-      }
-
-      mem0=0;
-      /* Backward pass to compute the pre-echo threshold */
-      for (i=len-1;i>=0;i--)
-      {
-#ifdef FIXED_POINT
-         /* FIXME: Use PSHR16() instead */
-         tmp[i] = mem0 + PSHR32(tmp[i]-mem0,3);
-#else
-         tmp[i] = mem0 + MULT16_16_P15(QCONST16(0.125f,15),tmp[i]-mem0);
-#endif
-         mem0 = tmp[i];
-      }
-      /*for (i=0;i<len;i++)printf("%f ", tmp[i]/mean);printf("\n");*/
-
-      /* Compute the ratio of the mean energy over the harmonic mean of the energy.
-         This essentially corresponds to a bitrate-normalized temporal noise-to-mask
-         ratio */
-
-      /* Inverse of the mean energy in Q15+6 */
-      norm = SHL32(EXTEND32(len),6+14)/ADD32(EPSILON,SHR32(mean,1));
-      /* Compute harmonic mean discarding the unreliable boundaries
-         The data is smooth, so we only take 1/4th of the samples */
-      unmask=0;
-      for (i=12;i<len-5;i+=4)
-      {
-         int id;
-#ifdef FIXED_POINT
-         id = IMAX(0,IMIN(127,MULT16_32_Q15(tmp[i],norm))); /* Do not round to nearest */
-#else
-         id = IMAX(0,IMIN(127,floor(64*norm*tmp[i]))); /* Do not round to nearest */
-#endif
-         unmask += inv_table[id];
-      }
-      /*printf("%d\n", unmask);*/
-      /* Normalize, compensate for the 1/4th of the sample and the factor of 6 in the inverse table */
-      unmask = 64*unmask*4/(6*(len-17));
-      if (unmask>mask_metric)
-      {
-         *tf_chan = c;
-         mask_metric = unmask;
-      }
-   }
-   is_transient = mask_metric>141;
-
-   /* Arbitrary metric for VBR boost */
-   tf_max = MAX16(0,celt_sqrt(64*mask_metric)-64);
-   /* *tf_estimate = 1 + MIN16(1, sqrt(MAX16(0, tf_max-30))/20); */
-   *tf_estimate = QCONST16(1.f, 14) + celt_sqrt(MAX16(0, SHL32(MULT16_16(QCONST16(0.0069,14),IMIN(163,tf_max)),14)-QCONST32(0.139,28)));
-   /*printf("%d %f\n", tf_max, mask_metric);*/
-   RESTORE_STACK;
-#ifdef FUZZING
-   is_transient = rand()&0x1;
-#endif
-   /*printf("%d %f %d\n", is_transient, (float)*tf_estimate, tf_max);*/
-   return is_transient;
-}
-
-/** Apply window and compute the MDCT for all sub-frames and
-    all channels in a frame */
-static void compute_mdcts(const CELTMode *mode, int shortBlocks, celt_sig * OPUS_RESTRICT in, celt_sig * OPUS_RESTRICT out, int C, int LM)
-{
-   const int overlap = OVERLAP(mode);
-   int N;
-   int B;
-   int shift;
-   int b, c;
-   if (shortBlocks)
-   {
-      B = shortBlocks;
-      N = mode->shortMdctSize;
-      shift = mode->maxLM;
-   } else {
-      B = 1;
-      N = mode->shortMdctSize<<LM;
-      shift = mode->maxLM-LM;
-   }
-   c=0; do {
-      for (b=0;b<B;b++)
-      {
-         /* Interleaving the sub-frames while doing the MDCTs */
-         clt_mdct_forward(&mode->mdct, in+c*(B*N+overlap)+b*N, &out[b+c*N*B], mode->window, overlap, shift, B);
-      }
-   } while (++c<C);
-}
-
-/** Compute the IMDCT and apply window for all sub-frames and
-    all channels in a frame */
-static void compute_inv_mdcts(const CELTMode *mode, int shortBlocks, celt_sig *X,
-      celt_sig * OPUS_RESTRICT out_mem[], int C, int LM)
-{
-   int b, c;
-   int B;
-   int N;
-   int shift;
-   const int overlap = OVERLAP(mode);
-
-   if (shortBlocks)
-   {
-      B = shortBlocks;
-      N = mode->shortMdctSize;
-      shift = mode->maxLM;
-   } else {
-      B = 1;
-      N = mode->shortMdctSize<<LM;
-      shift = mode->maxLM-LM;
-   }
-   c=0; do {
-      /* IMDCT on the interleaved the sub-frames, overlap-add is performed by the IMDCT */
-      for (b=0;b<B;b++)
-         clt_mdct_backward(&mode->mdct, &X[b+c*N*B], out_mem[c]+N*b, mode->window, overlap, shift, B);
-   } while (++c<C);
-}
-
-static void preemphasis(const opus_val16 * OPUS_RESTRICT pcmp, celt_sig * OPUS_RESTRICT inp,
-                        int N, int CC, int upsample, const opus_val16 *coef, celt_sig *mem, int clip)
-{
-   int i;
-   opus_val16 coef0, coef1;
-   celt_sig m;
-   int Nu;
-
-   coef0 = coef[0];
-   coef1 = coef[1];
-
-
-   Nu = N/upsample;
-   if (upsample!=1)
-   {
-      for (i=0;i<N;i++)
-         inp[i] = 0;
-   }
-   for (i=0;i<Nu;i++)
-   {
-      celt_sig x;
-
-      x = SCALEIN(pcmp[CC*i]);
-#ifndef FIXED_POINT
-      /* Replace NaNs with zeros */
-      if (!(x==x))
-         x = 0;
-#endif
-      inp[i*upsample] = x;
-   }
-
-#ifndef FIXED_POINT
-   if (clip)
-   {
-      /* Clip input to avoid encoding non-portable files */
-      for (i=0;i<Nu;i++)
-         inp[i*upsample] = MAX32(-65536.f, MIN32(65536.f,inp[i*upsample]));
-   }
-#endif
-   m = *mem;
-   if (coef1 == 0)
-   {
-      for (i=0;i<N;i++)
-      {
-         celt_sig x;
-         x = SHL32(inp[i], SIG_SHIFT);
-         /* Apply pre-emphasis */
-         inp[i] = x + m;
-         m = - MULT16_32_Q15(coef0, x);
-      }
-   } else {
-      opus_val16 coef2 = coef[2];
-      for (i=0;i<N;i++)
-      {
-         opus_val16 x, tmp;
-         x = inp[i];
-         /* Apply pre-emphasis */
-         tmp = MULT16_16(coef2, x);
-         inp[i] = tmp + m;
-         m = MULT16_32_Q15(coef1, inp[i]) - MULT16_32_Q15(coef0, tmp);
-      }
-   }
-   *mem = m;
-}
-
-static void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, const opus_val16 *coef, celt_sig *mem, celt_sig * OPUS_RESTRICT scratch)
-{
-   int c;
-   int Nd;
-   opus_val16 coef0, coef1;
-
-   coef0 = coef[0];
-   coef1 = coef[1];
-   Nd = N/downsample;
-   c=0; do {
-      int j;
-      celt_sig * OPUS_RESTRICT x;
-      opus_val16  * OPUS_RESTRICT y;
-      celt_sig m = mem[c];
-      x =in[c];
-      y = pcm+c;
-      /* Shortcut for the standard (non-custom modes) case */
-      if (coef1 == 0)
-      {
-         for (j=0;j<N;j++)
-         {
-            celt_sig tmp = x[j] + m;
-            m = MULT16_32_Q15(coef0, tmp);
-            scratch[j] = tmp;
-         }
-      } else {
-         opus_val16 coef3 = coef[3];
-         for (j=0;j<N;j++)
-         {
-            celt_sig tmp = x[j] + m;
-            m = MULT16_32_Q15(coef0, tmp)
-              - MULT16_32_Q15(coef1, x[j]);
-            tmp = SHL32(MULT16_32_Q15(coef3, tmp), 2);
-            scratch[j] = tmp;
-         }
-      }
-      mem[c] = m;
 
-      /* Perform down-sampling */
-      for (j=0;j<Nd;j++)
-         y[j*C] = SCALEOUT(SIG2WORD16(scratch[j*downsample]));
-   } while (++c<C);
-}
-
-static void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N,
+void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N,
       opus_val16 g0, opus_val16 g1, int tapset0, int tapset1,
       const opus_val16 *window, int overlap)
 {
@@ -677,288 +152,15 @@ static void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N,
    }
 }
 
-static const signed char tf_select_table[4][8] = {
+const signed char tf_select_table[4][8] = {
       {0, -1, 0, -1,    0,-1, 0,-1},
       {0, -1, 0, -2,    1, 0, 1,-1},
       {0, -2, 0, -3,    2, 0, 1,-1},
       {0, -2, 0, -3,    3, 0, 1,-1},
 };
 
-static opus_val32 l1_metric(const celt_norm *tmp, int N, int LM, opus_val16 bias)
-{
-   int i;
-   opus_val32 L1;
-   L1 = 0;
-   for (i=0;i<N;i++)
-      L1 += EXTEND32(ABS16(tmp[i]));
-   /* When in doubt, prefer good freq resolution */
-   L1 = MAC16_32_Q15(L1, LM*bias, L1);
-   return L1;
-
-}
-
-static int tf_analysis(const CELTMode *m, int len, int C, int isTransient,
-      int *tf_res, int nbCompressedBytes, celt_norm *X, int N0, int LM,
-      int *tf_sum, opus_val16 tf_estimate, int tf_chan)
-{
-   int i;
-   VARDECL(int, metric);
-   int cost0;
-   int cost1;
-   VARDECL(int, path0);
-   VARDECL(int, path1);
-   VARDECL(celt_norm, tmp);
-   VARDECL(celt_norm, tmp_1);
-   int lambda;
-   int sel;
-   int selcost[2];
-   int tf_select=0;
-   opus_val16 bias;
-
-   SAVE_STACK;
-   bias = MULT16_16_Q14(QCONST16(.04f,15), MAX16(-QCONST16(.25f,14), QCONST16(1.5f,14)-tf_estimate));
-   /*printf("%f ", bias);*/
-
-   if (nbCompressedBytes<15*C)
-   {
-      *tf_sum = 0;
-      for (i=0;i<len;i++)
-         tf_res[i] = isTransient;
-      return 0;
-   }
-   if (nbCompressedBytes<40)
-      lambda = 12;
-   else if (nbCompressedBytes<60)
-      lambda = 6;
-   else if (nbCompressedBytes<100)
-      lambda = 4;
-   else
-      lambda = 3;
-   lambda*=2;
-   ALLOC(metric, len, int);
-   ALLOC(tmp, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm);
-   ALLOC(tmp_1, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm);
-   ALLOC(path0, len, int);
-   ALLOC(path1, len, int);
-
-   *tf_sum = 0;
-   for (i=0;i<len;i++)
-   {
-      int j, k, N;
-      int narrow;
-      opus_val32 L1, best_L1;
-      int best_level=0;
-      N = (m->eBands[i+1]-m->eBands[i])<<LM;
-      /* band is too narrow to be split down to LM=-1 */
-      narrow = (m->eBands[i+1]-m->eBands[i])==1;
-      for (j=0;j<N;j++)
-         tmp[j] = X[tf_chan*N0 + j+(m->eBands[i]<<LM)];
-      /* Just add the right channel if we're in stereo */
-      /*if (C==2)
-         for (j=0;j<N;j++)
-            tmp[j] = ADD16(SHR16(tmp[j], 1),SHR16(X[N0+j+(m->eBands[i]<<LM)], 1));*/
-      L1 = l1_metric(tmp, N, isTransient ? LM : 0, bias);
-      best_L1 = L1;
-      /* Check the -1 case for transients */
-      if (isTransient && !narrow)
-      {
-         for (j=0;j<N;j++)
-            tmp_1[j] = tmp[j];
-         haar1(tmp_1, N>>LM, 1<<LM);
-         L1 = l1_metric(tmp_1, N, LM+1, bias);
-         if (L1<best_L1)
-         {
-            best_L1 = L1;
-            best_level = -1;
-         }
-      }
-      /*printf ("%f ", L1);*/
-      for (k=0;k<LM+!(isTransient||narrow);k++)
-      {
-         int B;
-
-         if (isTransient)
-            B = (LM-k-1);
-         else
-            B = k+1;
-
-         haar1(tmp, N>>k, 1<<k);
-
-         L1 = l1_metric(tmp, N, B, bias);
-
-         if (L1 < best_L1)
-         {
-            best_L1 = L1;
-            best_level = k+1;
-         }
-      }
-      /*printf ("%d ", isTransient ? LM-best_level : best_level);*/
-      /* metric is in Q1 to be able to select the mid-point (-0.5) for narrower bands */
-      if (isTransient)
-         metric[i] = 2*best_level;
-      else
-         metric[i] = -2*best_level;
-      *tf_sum += (isTransient ? LM : 0) - metric[i]/2;
-      /* For bands that can't be split to -1, set the metric to the half-way point to avoid
-         biasing the decision */
-      if (narrow && (metric[i]==0 || metric[i]==-2*LM))
-         metric[i]-=1;
-      /*printf("%d ", metric[i]);*/
-   }
-   /*printf("\n");*/
-   /* Search for the optimal tf resolution, including tf_select */
-   tf_select = 0;
-   for (sel=0;sel<2;sel++)
-   {
-      cost0 = 0;
-      cost1 = isTransient ? 0 : lambda;
-      for (i=1;i<len;i++)
-      {
-         int curr0, curr1;
-         curr0 = IMIN(cost0, cost1 + lambda);
-         curr1 = IMIN(cost0 + lambda, cost1);
-         cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+0]);
-         cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+1]);
-      }
-      cost0 = IMIN(cost0, cost1);
-      selcost[sel]=cost0;
-   }
-   /* For now, we're conservative and only allow tf_select=1 for transients.
-    * If tests confirm it's useful for non-transients, we could allow it. */
-   if (selcost[1]<selcost[0] && isTransient)
-      tf_select=1;
-   cost0 = 0;
-   cost1 = isTransient ? 0 : lambda;
-   /* Viterbi forward pass */
-   for (i=1;i<len;i++)
-   {
-      int curr0, curr1;
-      int from0, from1;
-
-      from0 = cost0;
-      from1 = cost1 + lambda;
-      if (from0 < from1)
-      {
-         curr0 = from0;
-         path0[i]= 0;
-      } else {
-         curr0 = from1;
-         path0[i]= 1;
-      }
-
-      from0 = cost0 + lambda;
-      from1 = cost1;
-      if (from0 < from1)
-      {
-         curr1 = from0;
-         path1[i]= 0;
-      } else {
-         curr1 = from1;
-         path1[i]= 1;
-      }
-      cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]);
-      cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]);
-   }
-   tf_res[len-1] = cost0 < cost1 ? 0 : 1;
-   /* Viterbi backward pass to check the decisions */
-   for (i=len-2;i>=0;i--)
-   {
-      if (tf_res[i+1] == 1)
-         tf_res[i] = path1[i+1];
-      else
-         tf_res[i] = path0[i+1];
-   }
-   /*printf("%d %f\n", *tf_sum, tf_estimate);*/
-   RESTORE_STACK;
-#ifdef FUZZING
-   tf_select = rand()&0x1;
-   tf_res[0] = rand()&0x1;
-   for (i=1;i<len;i++)
-      tf_res[i] = tf_res[i-1] ^ ((rand()&0xF) == 0);
-#endif
-   return tf_select;
-}
-
-static void tf_encode(int start, int end, int isTransient, int *tf_res, int LM, int tf_select, ec_enc *enc)
-{
-   int curr, i;
-   int tf_select_rsv;
-   int tf_changed;
-   int logp;
-   opus_uint32 budget;
-   opus_uint32 tell;
-   budget = enc->storage*8;
-   tell = ec_tell(enc);
-   logp = isTransient ? 2 : 4;
-   /* Reserve space to code the tf_select decision. */
-   tf_select_rsv = LM>0 && tell+logp+1 <= budget;
-   budget -= tf_select_rsv;
-   curr = tf_changed = 0;
-   for (i=start;i<end;i++)
-   {
-      if (tell+logp<=budget)
-      {
-         ec_enc_bit_logp(enc, tf_res[i] ^ curr, logp);
-         tell = ec_tell(enc);
-         curr = tf_res[i];
-         tf_changed |= curr;
-      }
-      else
-         tf_res[i] = curr;
-      logp = isTransient ? 4 : 5;
-   }
-   /* Only code tf_select if it would actually make a difference. */
-   if (tf_select_rsv &&
-         tf_select_table[LM][4*isTransient+0+tf_changed]!=
-         tf_select_table[LM][4*isTransient+2+tf_changed])
-      ec_enc_bit_logp(enc, tf_select, 1);
-   else
-      tf_select = 0;
-   for (i=start;i<end;i++)
-      tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]];
-   /*for(i=0;i<end;i++)printf("%d ", isTransient ? tf_res[i] : LM+tf_res[i]);printf("\n");*/
-}
-
-static void tf_decode(int start, int end, int isTransient, int *tf_res, int LM, ec_dec *dec)
-{
-   int i, curr, tf_select;
-   int tf_select_rsv;
-   int tf_changed;
-   int logp;
-   opus_uint32 budget;
-   opus_uint32 tell;
-
-   budget = dec->storage*8;
-   tell = ec_tell(dec);
-   logp = isTransient ? 2 : 4;
-   tf_select_rsv = LM>0 && tell+logp+1<=budget;
-   budget -= tf_select_rsv;
-   tf_changed = curr = 0;
-   for (i=start;i<end;i++)
-   {
-      if (tell+logp<=budget)
-      {
-         curr ^= ec_dec_bit_logp(dec, logp);
-         tell = ec_tell(dec);
-         tf_changed |= curr;
-      }
-      tf_res[i] = curr;
-      logp = isTransient ? 4 : 5;
-   }
-   tf_select = 0;
-   if (tf_select_rsv &&
-     tf_select_table[LM][4*isTransient+0+tf_changed] !=
-     tf_select_table[LM][4*isTransient+2+tf_changed])
-   {
-      tf_select = ec_dec_bit_logp(dec, 1);
-   }
-   for (i=start;i<end;i++)
-   {
-      tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]];
-   }
-}
 
-static void init_caps(const CELTMode *m,int *cap,int LM,int C)
+void init_caps(const CELTMode *m,int *cap,int LM,int C)
 {
    int i;
    for (i=0;i<m->nbEBands;i++)
@@ -969,2303 +171,6 @@ static void init_caps(const CELTMode *m,int *cap,int LM,int C)
    }
 }
 
-static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X,
-      const opus_val16 *bandLogE, int end, int LM, int C, int N0,
-      AnalysisInfo *analysis, opus_val16 *stereo_saving, opus_val16 tf_estimate,
-      int intensity)
-{
-   int i;
-   opus_val32 diff=0;
-   int c;
-   int trim_index = 5;
-   opus_val16 trim = QCONST16(5.f, 8);
-   opus_val16 logXC, logXC2;
-   if (C==2)
-   {
-      opus_val16 sum = 0; /* Q10 */
-      opus_val16 minXC; /* Q10 */
-      /* Compute inter-channel correlation for low frequencies */
-      for (i=0;i<8;i++)
-      {
-         int j;
-         opus_val32 partial = 0;
-         for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++)
-            partial = MAC16_16(partial, X[j], X[N0+j]);
-         sum = ADD16(sum, EXTRACT16(SHR32(partial, 18)));
-      }
-      sum = MULT16_16_Q15(QCONST16(1.f/8, 15), sum);
-      sum = MIN16(QCONST16(1.f, 10), ABS16(sum));
-      minXC = sum;
-      for (i=8;i<intensity;i++)
-      {
-         int j;
-         opus_val32 partial = 0;
-         for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++)
-            partial = MAC16_16(partial, X[j], X[N0+j]);
-         minXC = MIN16(minXC, ABS16(EXTRACT16(SHR32(partial, 18))));
-      }
-      minXC = MIN16(QCONST16(1.f, 10), ABS16(minXC));
-      /*printf ("%f\n", sum);*/
-      if (sum > QCONST16(.995f,10))
-         trim_index-=4;
-      else if (sum > QCONST16(.92f,10))
-         trim_index-=3;
-      else if (sum > QCONST16(.85f,10))
-         trim_index-=2;
-      else if (sum > QCONST16(.8f,10))
-         trim_index-=1;
-      /* mid-side savings estimations based on the LF average*/
-      logXC = celt_log2(QCONST32(1.001f, 20)-MULT16_16(sum, sum));
-      /* mid-side savings estimations based on min correlation */
-      logXC2 = MAX16(HALF16(logXC), celt_log2(QCONST32(1.001f, 20)-MULT16_16(minXC, minXC)));
-#ifdef FIXED_POINT
-      /* Compensate for Q20 vs Q14 input and convert output to Q8 */
-      logXC = PSHR32(logXC-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8);
-      logXC2 = PSHR32(logXC2-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8);
-#endif
-
-      trim += MAX16(-QCONST16(4.f, 8), MULT16_16_Q15(QCONST16(.75f,15),logXC));
-      *stereo_saving = MIN16(*stereo_saving + QCONST16(0.25f, 8), -HALF16(logXC2));
-   }
-
-   /* Estimate spectral tilt */
-   c=0; do {
-      for (i=0;i<end-1;i++)
-      {
-         diff += bandLogE[i+c*m->nbEBands]*(opus_int32)(2+2*i-end);
-      }
-   } while (++c<C);
-   diff /= C*(end-1);
-   /*printf("%f\n", diff);*/
-   if (diff > QCONST16(2.f, DB_SHIFT))
-      trim_index--;
-   if (diff > QCONST16(8.f, DB_SHIFT))
-      trim_index--;
-   if (diff < -QCONST16(4.f, DB_SHIFT))
-      trim_index++;
-   if (diff < -QCONST16(10.f, DB_SHIFT))
-      trim_index++;
-   trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), SHR16(diff+QCONST16(1.f, DB_SHIFT),DB_SHIFT-8)/6 ));
-   trim -= 2*SHR16(tf_estimate-QCONST16(1.f,14), 14-8);
-#ifndef FIXED_POINT
-   if (analysis->valid)
-   {
-      trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), 2*(analysis->tonality_slope+.05)));
-   }
-#endif
-
-#ifdef FIXED_POINT
-   trim_index = PSHR32(trim, 8);
-#else
-   trim_index = floor(.5+trim);
-#endif
-   if (trim_index<0)
-      trim_index = 0;
-   if (trim_index>10)
-      trim_index = 10;
-   /*printf("%d\n", trim_index);*/
-#ifdef FUZZING
-   trim_index = rand()%11;
-#endif
-   return trim_index;
-}
-
-static int stereo_analysis(const CELTMode *m, const celt_norm *X,
-      int LM, int N0)
-{
-   int i;
-   int thetas;
-   opus_val32 sumLR = EPSILON, sumMS = EPSILON;
-
-   /* Use the L1 norm to model the entropy of the L/R signal vs the M/S signal */
-   for (i=0;i<13;i++)
-   {
-      int j;
-      for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++)
-      {
-         opus_val32 L, R, M, S;
-         /* We cast to 32-bit first because of the -32768 case */
-         L = EXTEND32(X[j]);
-         R = EXTEND32(X[N0+j]);
-         M = ADD32(L, R);
-         S = SUB32(L, R);
-         sumLR = ADD32(sumLR, ADD32(ABS32(L), ABS32(R)));
-         sumMS = ADD32(sumMS, ADD32(ABS32(M), ABS32(S)));
-      }
-   }
-   sumMS = MULT16_32_Q15(QCONST16(0.707107f, 15), sumMS);
-   thetas = 13;
-   /* We don't need thetas for lower bands with LM<=1 */
-   if (LM<=1)
-      thetas -= 8;
-   return MULT16_32_Q15((m->eBands[13]<<(LM+1))+thetas, sumMS)
-         > MULT16_32_Q15(m->eBands[13]<<(LM+1), sumLR);
-}
-
-static int run_prefilter(CELTEncoder *st, celt_sig *in, celt_sig *prefilter_mem, int CC, int N,
-      int prefilter_tapset, int *pitch, opus_val16 *gain, int *qgain, int enabled, int nbAvailableBytes)
-{
-   int c;
-   VARDECL(celt_sig, _pre);
-   celt_sig *pre[2];
-   const CELTMode *mode;
-   int pitch_index;
-   opus_val16 gain1;
-   opus_val16 pf_threshold;
-   int pf_on;
-   int qg;
-   SAVE_STACK;
-
-   mode = st->mode;
-   ALLOC(_pre, CC*(N+COMBFILTER_MAXPERIOD), celt_sig);
-
-   pre[0] = _pre;
-   pre[1] = _pre + (N+COMBFILTER_MAXPERIOD);
-
-
-   c=0; do {
-      OPUS_COPY(pre[c], prefilter_mem+c*COMBFILTER_MAXPERIOD, COMBFILTER_MAXPERIOD);
-      OPUS_COPY(pre[c]+COMBFILTER_MAXPERIOD, in+c*(N+st->overlap)+st->overlap, N);
-   } while (++c<CC);
-
-   if (enabled)
-   {
-      VARDECL(opus_val16, pitch_buf);
-      ALLOC(pitch_buf, (COMBFILTER_MAXPERIOD+N)>>1, opus_val16);
-
-      pitch_downsample(pre, pitch_buf, COMBFILTER_MAXPERIOD+N, CC);
-      /* Don't search for the fir last 1.5 octave of the range because
-         there's too many false-positives due to short-term correlation */
-      pitch_search(pitch_buf+(COMBFILTER_MAXPERIOD>>1), pitch_buf, N,
-            COMBFILTER_MAXPERIOD-3*COMBFILTER_MINPERIOD, &pitch_index);
-      pitch_index = COMBFILTER_MAXPERIOD-pitch_index;
-
-      gain1 = remove_doubling(pitch_buf, COMBFILTER_MAXPERIOD, COMBFILTER_MINPERIOD,
-            N, &pitch_index, st->prefilter_period, st->prefilter_gain);
-      if (pitch_index > COMBFILTER_MAXPERIOD-2)
-         pitch_index = COMBFILTER_MAXPERIOD-2;
-      gain1 = MULT16_16_Q15(QCONST16(.7f,15),gain1);
-      /*printf("%d %d %f %f\n", pitch_change, pitch_index, gain1, st->analysis.tonality);*/
-      if (st->loss_rate>2)
-         gain1 = HALF32(gain1);
-      if (st->loss_rate>4)
-         gain1 = HALF32(gain1);
-      if (st->loss_rate>8)
-         gain1 = 0;
-   } else {
-      gain1 = 0;
-      pitch_index = COMBFILTER_MINPERIOD;
-   }
-
-   /* Gain threshold for enabling the prefilter/postfilter */
-   pf_threshold = QCONST16(.2f,15);
-
-   /* Adjusting the threshold based on rate and continuity */
-   if (abs(pitch_index-st->prefilter_period)*10>pitch_index)
-      pf_threshold += QCONST16(.2f,15);
-   if (nbAvailableBytes<25)
-      pf_threshold += QCONST16(.1f,15);
-   if (nbAvailableBytes<35)
-      pf_threshold += QCONST16(.1f,15);
-   if (st->prefilter_gain > QCONST16(.4f,15))
-      pf_threshold -= QCONST16(.1f,15);
-   if (st->prefilter_gain > QCONST16(.55f,15))
-      pf_threshold -= QCONST16(.1f,15);
-
-   /* Hard threshold at 0.2 */
-   pf_threshold = MAX16(pf_threshold, QCONST16(.2f,15));
-   if (gain1<pf_threshold)
-   {
-      gain1 = 0;
-      pf_on = 0;
-      qg = 0;
-   } else {
-      /*This block is not gated by a total bits check only because
-        of the nbAvailableBytes check above.*/
-      if (ABS16(gain1-st->prefilter_gain)<QCONST16(.1f,15))
-         gain1=st->prefilter_gain;
-
-#ifdef FIXED_POINT
-      qg = ((gain1+1536)>>10)/3-1;
-#else
-      qg = (int)floor(.5f+gain1*32/3)-1;
-#endif
-      qg = IMAX(0, IMIN(7, qg));
-      gain1 = QCONST16(0.09375f,15)*(qg+1);
-      pf_on = 1;
-   }
-   /*printf("%d %f\n", pitch_index, gain1);*/
-
-   c=0; do {
-      int offset = mode->shortMdctSize-st->overlap;
-      st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD);
-      OPUS_COPY(in+c*(N+st->overlap), st->in_mem+c*(st->overlap), st->overlap);
-      if (offset)
-         comb_filter(in+c*(N+st->overlap)+st->overlap, pre[c]+COMBFILTER_MAXPERIOD,
-               st->prefilter_period, st->prefilter_period, offset, -st->prefilter_gain, -st->prefilter_gain,
-               st->prefilter_tapset, st->prefilter_tapset, NULL, 0);
-
-      comb_filter(in+c*(N+st->overlap)+st->overlap+offset, pre[c]+COMBFILTER_MAXPERIOD+offset,
-            st->prefilter_period, pitch_index, N-offset, -st->prefilter_gain, -gain1,
-            st->prefilter_tapset, prefilter_tapset, mode->window, st->overlap);
-      OPUS_COPY(st->in_mem+c*(st->overlap), in+c*(N+st->overlap)+N, st->overlap);
-
-      if (N>COMBFILTER_MAXPERIOD)
-      {
-         OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, pre[c]+N, COMBFILTER_MAXPERIOD);
-      } else {
-         OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, prefilter_mem+c*COMBFILTER_MAXPERIOD+N, COMBFILTER_MAXPERIOD-N);
-         OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD+COMBFILTER_MAXPERIOD-N, pre[c]+COMBFILTER_MAXPERIOD, N);
-      }
-   } while (++c<CC);
-
-   RESTORE_STACK;
-   *gain = gain1;
-   *pitch = pitch_index;
-   *qgain = qg;
-   return pf_on;
-}
-
-int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes, ec_enc *enc)
-{
-   int i, c, N;
-   opus_int32 bits;
-   ec_enc _enc;
-   VARDECL(celt_sig, in);
-   VARDECL(celt_sig, freq);
-   VARDECL(celt_norm, X);
-   VARDECL(celt_ener, bandE);
-   VARDECL(opus_val16, bandLogE);
-   VARDECL(opus_val16, bandLogE2);
-   VARDECL(int, fine_quant);
-   VARDECL(opus_val16, error);
-   VARDECL(int, pulses);
-   VARDECL(int, cap);
-   VARDECL(int, offsets);
-   VARDECL(int, fine_priority);
-   VARDECL(int, tf_res);
-   VARDECL(unsigned char, collapse_masks);
-   celt_sig *prefilter_mem;
-   opus_val16 *oldBandE, *oldLogE, *oldLogE2;
-   int shortBlocks=0;
-   int isTransient=0;
-   const int CC = st->channels;
-   const int C = st->stream_channels;
-   int LM, M;
-   int tf_select;
-   int nbFilledBytes, nbAvailableBytes;
-   int effEnd;
-   int codedBands;
-   int tf_sum;
-   int alloc_trim;
-   int pitch_index=COMBFILTER_MINPERIOD;
-   opus_val16 gain1 = 0;
-   int dual_stereo=0;
-   int effectiveBytes;
-   int dynalloc_logp;
-   opus_int32 vbr_rate;
-   opus_int32 total_bits;
-   opus_int32 total_boost;
-   opus_int32 balance;
-   opus_int32 tell;
-   int prefilter_tapset=0;
-   int pf_on;
-   int anti_collapse_rsv;
-   int anti_collapse_on=0;
-   int silence=0;
-   int tf_chan = 0;
-   opus_val16 tf_estimate;
-   int pitch_change=0;
-   opus_int32 tot_boost=0;
-   opus_val16 sample_max;
-   opus_val16 maxDepth;
-   const OpusCustomMode *mode;
-   int nbEBands;
-   int overlap;
-   const opus_int16 *eBands;
-   int secondMdct;
-   ALLOC_STACK;
-
-   mode = st->mode;
-   nbEBands = mode->nbEBands;
-   overlap = mode->overlap;
-   eBands = mode->eBands;
-   tf_estimate = QCONST16(1.0f,14);
-   if (nbCompressedBytes<2 || pcm==NULL)
-     return OPUS_BAD_ARG;
-
-   frame_size *= st->upsample;
-   for (LM=0;LM<=mode->maxLM;LM++)
-      if (mode->shortMdctSize<<LM==frame_size)
-         break;
-   if (LM>mode->maxLM)
-      return OPUS_BAD_ARG;
-   M=1<<LM;
-   N = M*mode->shortMdctSize;
-
-   prefilter_mem = st->in_mem+CC*(st->overlap);
-   oldBandE = (opus_val16*)(st->in_mem+CC*(st->overlap+COMBFILTER_MAXPERIOD));
-   oldLogE = oldBandE + CC*nbEBands;
-   oldLogE2 = oldLogE + CC*nbEBands;
-
-   if (enc==NULL)
-   {
-      tell=1;
-      nbFilledBytes=0;
-   } else {
-      tell=ec_tell(enc);
-      nbFilledBytes=(tell+4)>>3;
-   }
-
-#ifdef CUSTOM_MODES
-   if (st->signalling && enc==NULL)
-   {
-      int tmp = (mode->effEBands-st->end)>>1;
-      st->end = IMAX(1, mode->effEBands-tmp);
-      compressed[0] = tmp<<5;
-      compressed[0] |= LM<<3;
-      compressed[0] |= (C==2)<<2;
-      /* Convert "standard mode" to Opus header */
-      if (mode->Fs==48000 && mode->shortMdctSize==120)
-      {
-         int c0 = toOpus(compressed[0]);
-         if (c0<0)
-            return OPUS_BAD_ARG;
-         compressed[0] = c0;
-      }
-      compressed++;
-      nbCompressedBytes--;
-   }
-#else
-   celt_assert(st->signalling==0);
-#endif
-
-   /* Can't produce more than 1275 output bytes */
-   nbCompressedBytes = IMIN(nbCompressedBytes,1275);
-   nbAvailableBytes = nbCompressedBytes - nbFilledBytes;
-
-   if (st->vbr && st->bitrate!=OPUS_BITRATE_MAX)
-   {
-      opus_int32 den=mode->Fs>>BITRES;
-      vbr_rate=(st->bitrate*frame_size+(den>>1))/den;
-#ifdef CUSTOM_MODES
-      if (st->signalling)
-         vbr_rate -= 8<<BITRES;
-#endif
-      effectiveBytes = vbr_rate>>(3+BITRES);
-   } else {
-      opus_int32 tmp;
-      vbr_rate = 0;
-      tmp = st->bitrate*frame_size;
-      if (tell>1)
-         tmp += tell;
-      if (st->bitrate!=OPUS_BITRATE_MAX)
-         nbCompressedBytes = IMAX(2, IMIN(nbCompressedBytes,
-               (tmp+4*mode->Fs)/(8*mode->Fs)-!!st->signalling));
-      effectiveBytes = nbCompressedBytes;
-   }
-
-   if (enc==NULL)
-   {
-      ec_enc_init(&_enc, compressed, nbCompressedBytes);
-      enc = &_enc;
-   }
-
-   if (vbr_rate>0)
-   {
-      /* Computes the max bit-rate allowed in VBR mode to avoid violating the
-          target rate and buffering.
-         We must do this up front so that bust-prevention logic triggers
-          correctly if we don't have enough bits. */
-      if (st->constrained_vbr)
-      {
-         opus_int32 vbr_bound;
-         opus_int32 max_allowed;
-         /* We could use any multiple of vbr_rate as bound (depending on the
-             delay).
-            This is clamped to ensure we use at least two bytes if the encoder
-             was entirely empty, but to allow 0 in hybrid mode. */
-         vbr_bound = vbr_rate;
-         max_allowed = IMIN(IMAX(tell==1?2:0,
-               (vbr_rate+vbr_bound-st->vbr_reservoir)>>(BITRES+3)),
-               nbAvailableBytes);
-         if(max_allowed < nbAvailableBytes)
-         {
-            nbCompressedBytes = nbFilledBytes+max_allowed;
-            nbAvailableBytes = max_allowed;
-            ec_enc_shrink(enc, nbCompressedBytes);
-         }
-      }
-   }
-   total_bits = nbCompressedBytes*8;
-
-   effEnd = st->end;
-   if (effEnd > mode->effEBands)
-      effEnd = mode->effEBands;
-
-   ALLOC(in, CC*(N+st->overlap), celt_sig);
-
-   sample_max=MAX16(st->overlap_max, celt_maxabs16(pcm, C*(N-overlap)/st->upsample));
-   st->overlap_max=celt_maxabs16(pcm+C*(N-overlap)/st->upsample, C*overlap/st->upsample);
-   sample_max=MAX16(sample_max, st->overlap_max);
-#ifdef FIXED_POINT
-   silence = (sample_max==0);
-#else
-   silence = (sample_max <= (opus_val16)1/(1<<st->lsb_depth));
-#endif
-#ifdef FUZZING
-   if ((rand()&0x3F)==0)
-      silence = 1;
-#endif
-   if (tell==1)
-      ec_enc_bit_logp(enc, silence, 15);
-   else
-      silence=0;
-   if (silence)
-   {
-      /*In VBR mode there is no need to send more than the minimum. */
-      if (vbr_rate>0)
-      {
-         effectiveBytes=nbCompressedBytes=IMIN(nbCompressedBytes, nbFilledBytes+2);
-         total_bits=nbCompressedBytes*8;
-         nbAvailableBytes=2;
-         ec_enc_shrink(enc, nbCompressedBytes);
-      }
-      /* Pretend we've filled all the remaining bits with zeros
-            (that's what the initialiser did anyway) */
-      tell = nbCompressedBytes*8;
-      enc->nbits_total+=tell-ec_tell(enc);
-   }
-   c=0; do {
-      preemphasis(pcm+c, in+c*(N+st->overlap)+st->overlap, N, CC, st->upsample,
-                  mode->preemph, st->preemph_memE+c, st->clip);
-   } while (++c<CC);
-
-
-
-   /* Find pitch period and gain */
-   {
-      int enabled;
-      int qg;
-      enabled = nbAvailableBytes>12*C && st->start==0 && !silence && !st->disable_pf && st->complexity >= 5;
-
-      prefilter_tapset = st->tapset_decision;
-      pf_on = run_prefilter(st, in, prefilter_mem, CC, N, prefilter_tapset, &pitch_index, &gain1, &qg, enabled, nbAvailableBytes);
-      if ((gain1 > QCONST16(.4f,15) || st->prefilter_gain > QCONST16(.4f,15)) && st->analysis.tonality > .3
-            && (pitch_index > 1.26*st->prefilter_period || pitch_index < .79*st->prefilter_period))
-         pitch_change = 1;
-      if (pf_on==0)
-      {
-         if(st->start==0 && tell+16<=total_bits)
-            ec_enc_bit_logp(enc, 0, 1);
-      } else {
-         /*This block is not gated by a total bits check only because
-           of the nbAvailableBytes check above.*/
-         int octave;
-         ec_enc_bit_logp(enc, 1, 1);
-         pitch_index += 1;
-         octave = EC_ILOG(pitch_index)-5;
-         ec_enc_uint(enc, octave, 6);
-         ec_enc_bits(enc, pitch_index-(16<<octave), 4+octave);
-         pitch_index -= 1;
-         ec_enc_bits(enc, qg, 3);
-         ec_enc_icdf(enc, prefilter_tapset, tapset_icdf, 2);
-      }
-   }
-
-   isTransient = 0;
-   shortBlocks = 0;
-   if (LM>0 && ec_tell(enc)+3<=total_bits)
-   {
-      if (st->complexity > 1)
-      {
-         isTransient = transient_analysis(in, N+st->overlap, CC,
-                  &tf_estimate, &tf_chan);
-         if (isTransient)
-            shortBlocks = M;
-      }
-      ec_enc_bit_logp(enc, isTransient, 3);
-   }
-
-   ALLOC(freq, CC*N, celt_sig); /**< Interleaved signal MDCTs */
-   ALLOC(bandE,nbEBands*CC, celt_ener);
-   ALLOC(bandLogE,nbEBands*CC, opus_val16);
-
-   secondMdct = shortBlocks && st->complexity>=8;
-   ALLOC(bandLogE2, C*nbEBands, opus_val16);
-   if (secondMdct)
-   {
-      compute_mdcts(mode, 0, in, freq, CC, LM);
-      if (CC==2&&C==1)
-      {
-         for (i=0;i<N;i++)
-            freq[i] = ADD32(HALF32(freq[i]), HALF32(freq[N+i]));
-      }
-      if (st->upsample != 1)
-      {
-         c=0; do
-         {
-            int bound = N/st->upsample;
-            for (i=0;i<bound;i++)
-               freq[c*N+i] *= st->upsample;
-            for (;i<N;i++)
-               freq[c*N+i] = 0;
-         } while (++c<C);
-      }
-      compute_band_energies(mode, freq, bandE, effEnd, C, M);
-      amp2Log2(mode, effEnd, st->end, bandE, bandLogE2, C);
-      for (i=0;i<C*nbEBands;i++)
-         bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT));
-   }
-
-   compute_mdcts(mode, shortBlocks, in, freq, CC, LM);
-
-   if (CC==2&&C==1)
-   {
-      for (i=0;i<N;i++)
-         freq[i] = ADD32(HALF32(freq[i]), HALF32(freq[N+i]));
-      tf_chan = 0;
-   }
-   if (st->upsample != 1)
-   {
-      c=0; do
-      {
-         int bound = N/st->upsample;
-         for (i=0;i<bound;i++)
-            freq[c*N+i] *= st->upsample;
-         for (;i<N;i++)
-            freq[c*N+i] = 0;
-      } while (++c<C);
-   }
-   compute_band_energies(mode, freq, bandE, effEnd, C, M);
-
-   amp2Log2(mode, effEnd, st->end, bandE, bandLogE, C);
-   /*for (i=0;i<21;i++)
-      printf("%f ", bandLogE[i]);
-   printf("\n");*/
-
-   if (!secondMdct)
-   {
-      for (i=0;i<C*nbEBands;i++)
-         bandLogE2[i] = bandLogE[i];
-   }
-
-   ALLOC(X, C*N, celt_norm);         /**< Interleaved normalised MDCTs */
-
-   /* Band normalisation */
-   normalise_bands(mode, freq, X, bandE, effEnd, C, M);
-
-   ALLOC(tf_res, nbEBands, int);
-   tf_select = tf_analysis(mode, effEnd, C, isTransient, tf_res, effectiveBytes, X, N, LM, &tf_sum, tf_estimate, tf_chan);
-   for (i=effEnd;i<st->end;i++)
-      tf_res[i] = tf_res[effEnd-1];
-
-   ALLOC(error, C*nbEBands, opus_val16);
-   quant_coarse_energy(mode, st->start, st->end, effEnd, bandLogE,
-         oldBandE, total_bits, error, enc,
-         C, LM, nbAvailableBytes, st->force_intra,
-         &st->delayedIntra, st->complexity >= 4, st->loss_rate);
-
-   tf_encode(st->start, st->end, isTransient, tf_res, LM, tf_select, enc);
-
-   if (ec_tell(enc)+4<=total_bits)
-   {
-      if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C)
-      {
-         if (st->complexity == 0)
-            st->spread_decision = SPREAD_NONE;
-      } else {
-         if (st->analysis.valid)
-         {
-            static const opus_val16 spread_thresholds[3] = {-QCONST16(.6f, 15), -QCONST16(.2f, 15), -QCONST16(.07f, 15)};
-            static const opus_val16 spread_histeresis[3] = {QCONST16(.15f, 15), QCONST16(.07f, 15), QCONST16(.02f, 15)};
-            static const opus_val16 tapset_thresholds[2] = {QCONST16(.0f, 15), QCONST16(.15f, 15)};
-            static const opus_val16 tapset_histeresis[2] = {QCONST16(.1f, 15), QCONST16(.05f, 15)};
-            st->spread_decision = hysteresis_decision(-st->analysis.tonality, spread_thresholds, spread_histeresis, 3, st->spread_decision);
-            st->tapset_decision = hysteresis_decision(st->analysis.tonality_slope, tapset_thresholds, tapset_histeresis, 2, st->tapset_decision);
-         } else {
-            st->spread_decision = spreading_decision(mode, X,
-                  &st->tonal_average, st->spread_decision, &st->hf_average,
-                  &st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M);
-         }
-         /*printf("%d %d\n", st->tapset_decision, st->spread_decision);*/
-         /*printf("%f %d %f %d\n\n", st->analysis.tonality, st->spread_decision, st->analysis.tonality_slope, st->tapset_decision);*/
-      }
-      ec_enc_icdf(enc, st->spread_decision, spread_icdf, 5);
-   }
-
-   ALLOC(cap, nbEBands, int);
-   ALLOC(offsets, nbEBands, int);
-
-   init_caps(mode,cap,LM,C);
-   for (i=0;i<nbEBands;i++)
-      offsets[i] = 0;
-   /* Dynamic allocation code */
-   maxDepth=-QCONST16(32.f, DB_SHIFT);
-   /* Make sure that dynamic allocation can't make us bust the budget */
-   if (effectiveBytes > 50 && LM>=1)
-   {
-      int last=0;
-      VARDECL(opus_val16, follower);
-      ALLOC(follower, C*nbEBands, opus_val16);
-      c=0;do
-      {
-         follower[c*nbEBands] = bandLogE2[c*nbEBands];
-         for (i=1;i<st->end;i++)
-         {
-            /* The last band to be at least 3 dB higher than the previous one
-               is the last we'll consider. Otherwise, we run into problems on
-               bandlimited signals. */
-            if (bandLogE2[c*nbEBands+i] > bandLogE2[c*nbEBands+i-1]+QCONST16(.5f,DB_SHIFT))
-               last=i;
-            follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i-1]+QCONST16(1.5f,DB_SHIFT), bandLogE2[c*nbEBands+i]);
-         }
-         for (i=last-1;i>=0;i--)
-            follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i], MIN16(follower[c*nbEBands+i+1]+QCONST16(2.f,DB_SHIFT), bandLogE2[c*nbEBands+i]));
-         for (i=0;i<st->end;i++)
-         {
-            opus_val16 noise_floor;
-            /* Noise floor must take into account eMeans, the depth, the width of the bands
-               and the preemphasis filter (approx. square of bark band ID) */
-            noise_floor = MULT16_16(QCONST16(0.0625f, DB_SHIFT),mode->logN[i])
-                  +QCONST16(.5f,DB_SHIFT)+SHL16(9-st->lsb_depth,DB_SHIFT)-SHL16(eMeans[i],6)
-                  +MULT16_16(QCONST16(.0062,DB_SHIFT),(i+5)*(i+5));
-            follower[c*nbEBands+i] = MAX16(follower[c*nbEBands+i], noise_floor);
-            maxDepth = MAX16(maxDepth, bandLogE[c*nbEBands+i]-noise_floor);
-         }
-      } while (++c<C);
-      if (C==2)
-      {
-         for (i=st->start;i<st->end;i++)
-         {
-            /* Consider 24 dB "cross-talk" */
-            follower[nbEBands+i] = MAX16(follower[nbEBands+i], follower[                   i]-QCONST16(4.f,DB_SHIFT));
-            follower[                   i] = MAX16(follower[                   i], follower[nbEBands+i]-QCONST16(4.f,DB_SHIFT));
-            follower[i] = HALF16(MAX16(0, bandLogE[i]-follower[i]) + MAX16(0, bandLogE[nbEBands+i]-follower[nbEBands+i]));
-         }
-      } else {
-         for (i=st->start;i<st->end;i++)
-         {
-            follower[i] = MAX16(0, bandLogE[i]-follower[i]);
-         }
-      }
-      /* For non-transient CBR/CVBR frames, halve the dynalloc contribution */
-      if ((!st->vbr || st->constrained_vbr)&&!isTransient)
-      {
-         for (i=st->start;i<st->end;i++)
-            follower[i] = HALF16(follower[i]);
-      }
-      for (i=st->start;i<st->end;i++)
-      {
-         int width;
-         int boost;
-         int boost_bits;
-
-         if (i<8)
-            follower[i] *= 2;
-         if (i>=12)
-            follower[i] = HALF16(follower[i]);
-         follower[i] = MIN16(follower[i], QCONST16(4, DB_SHIFT));
-
-         width = C*(eBands[i+1]-eBands[i])<<LM;
-         if (width<6)
-         {
-            boost = SHR32(EXTEND32(follower[i]),DB_SHIFT);
-            boost_bits = boost*width<<BITRES;
-         } else if (width > 48) {
-            boost = SHR32(EXTEND32(follower[i])*8,DB_SHIFT);
-            boost_bits = (boost*width<<BITRES)/8;
-         } else {
-            boost = SHR32(EXTEND32(follower[i])*width/6,DB_SHIFT);
-            boost_bits = boost*6<<BITRES;
-         }
-         /* For CBR and non-transient CVBR frames, limit dynalloc to 1/4 of the bits */
-         if ((!st->vbr || (st->constrained_vbr&&!isTransient))
-               && (tot_boost+boost_bits)>>BITRES>>3 > effectiveBytes/4)
-         {
-            offsets[i] = 0;
-            break;
-         } else {
-            offsets[i] = boost;
-            tot_boost += boost_bits;
-         }
-      }
-   }
-   dynalloc_logp = 6;
-   total_bits<<=BITRES;
-   total_boost = 0;
-   tell = ec_tell_frac(enc);
-   for (i=st->start;i<st->end;i++)
-   {
-      int width, quanta;
-      int dynalloc_loop_logp;
-      int boost;
-      int j;
-      width = C*(eBands[i+1]-eBands[i])<<LM;
-      /* quanta is 6 bits, but no more than 1 bit/sample
-         and no less than 1/8 bit/sample */
-      quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width));
-      dynalloc_loop_logp = dynalloc_logp;
-      boost = 0;
-      for (j = 0; tell+(dynalloc_loop_logp<<BITRES) < total_bits-total_boost
-            && boost < cap[i]; j++)
-      {
-         int flag;
-         flag = j<offsets[i];
-         ec_enc_bit_logp(enc, flag, dynalloc_loop_logp);
-         tell = ec_tell_frac(enc);
-         if (!flag)
-            break;
-         boost += quanta;
-         total_boost += quanta;
-         dynalloc_loop_logp = 1;
-      }
-      /* Making dynalloc more likely */
-      if (j)
-         dynalloc_logp = IMAX(2, dynalloc_logp-1);
-      offsets[i] = boost;
-   }
-
-   if (C==2)
-   {
-      int effectiveRate;
-
-      static const opus_val16 intensity_thresholds[21]=
-      /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19  20  off*/
-        { 16,21,23,25,27,29,31,33,35,38,42,46,50,54,58,63,68,75,84,102,130};
-      static const opus_val16 intensity_histeresis[21]=
-        {  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 6,  8, 12};
-
-      /* Always use MS for 2.5 ms frames until we can do a better analysis */
-      if (LM!=0)
-         dual_stereo = stereo_analysis(mode, X, LM, N);
-
-      /* Account for coarse energy */
-      effectiveRate = (8*effectiveBytes - 80)>>LM;
-
-      /* effectiveRate in kb/s */
-      effectiveRate = 2*effectiveRate/5;
-
-      st->intensity = hysteresis_decision(effectiveRate, intensity_thresholds, intensity_histeresis, 21, st->intensity);
-      st->intensity = IMIN(st->end,IMAX(st->start, st->intensity));
-   }
-
-   alloc_trim = 5;
-   if (tell+(6<<BITRES) <= total_bits - total_boost)
-   {
-      alloc_trim = alloc_trim_analysis(mode, X, bandLogE,
-            st->end, LM, C, N, &st->analysis, &st->stereo_saving, tf_estimate, st->intensity);
-      ec_enc_icdf(enc, alloc_trim, trim_icdf, 7);
-      tell = ec_tell_frac(enc);
-   }
-
-   /* Variable bitrate */
-   if (vbr_rate>0)
-   {
-     opus_val16 alpha;
-     opus_int32 delta;
-     /* The target rate in 8th bits per frame */
-     opus_int32 target, base_target;
-     opus_int32 min_allowed;
-     int coded_bins;
-     int coded_bands;
-     int lm_diff = mode->maxLM - LM;
-     coded_bands = st->lastCodedBands ? st->lastCodedBands : nbEBands;
-     coded_bins = eBands[coded_bands]<<LM;
-     if (C==2)
-        coded_bins += eBands[IMIN(st->intensity, coded_bands)]<<LM;
-
-     /* Don't attempt to use more than 510 kb/s, even for frames smaller than 20 ms.
-        The CELT allocator will just not be able to use more than that anyway. */
-     nbCompressedBytes = IMIN(nbCompressedBytes,1275>>(3-LM));
-     target = vbr_rate - ((40*C+20)<<BITRES);
-     base_target = target;
-
-     if (st->constrained_vbr)
-        target += (st->vbr_offset>>lm_diff);
-
-     /*printf("%f %f %f %f %d %d ", st->analysis.activity, st->analysis.tonality, tf_estimate, st->stereo_saving, tot_boost, coded_bands);*/
-#ifndef FIXED_POINT
-     if (st->analysis.valid && st->analysis.activity<.4)
-        target -= (coded_bins<<BITRES)*1*(.4-st->analysis.activity);
-#endif
-     /* Stereo savings */
-     if (C==2)
-     {
-        int coded_stereo_bands;
-        int coded_stereo_dof;
-        coded_stereo_bands = IMIN(st->intensity, coded_bands);
-        coded_stereo_dof = (eBands[coded_stereo_bands]<<LM)-coded_stereo_bands;
-        /*printf("%d %d %d ", coded_stereo_dof, coded_bins, tot_boost);*/
-        target -= MIN32(target/3, SHR16(MULT16_16(st->stereo_saving,(coded_stereo_dof<<BITRES)),8));
-        target += MULT16_16_Q15(QCONST16(0.035,15),coded_stereo_dof<<BITRES);
-     }
-     /* Limits starving of other bands when using dynalloc */
-     target += tot_boost;
-     /* Compensates for the average transient boost */
-     target = MULT16_32_Q15(QCONST16(0.96f,15),target);
-     /* Apply transient boost */
-     target = SHL32(MULT16_32_Q15(tf_estimate, target),1);
-
-#ifndef FIXED_POINT
-     /* Apply tonality boost */
-     if (st->analysis.valid) {
-        int tonal_target;
-        float tonal;
-
-        /* Compensates for the average tonality boost */
-        target -= MULT16_16_Q15(QCONST16(0.13f,15),coded_bins<<BITRES);
-
-        tonal = MAX16(0,st->analysis.tonality-.2);
-        tonal_target = target + (coded_bins<<BITRES)*2.0f*tonal;
-        if (pitch_change)
-           tonal_target +=  (coded_bins<<BITRES)*.8;
-        /*printf("%f %f ", st->analysis.tonality, tonal);*/
-        target = IMAX(tonal_target,target);
-     }
-#endif
-
-     {
-        opus_int32 floor_depth;
-        int bins;
-        bins = eBands[nbEBands-2]<<LM;
-        /*floor_depth = SHR32(MULT16_16((C*bins<<BITRES),celt_log2(SHL32(MAX16(1,sample_max),13))), DB_SHIFT);*/
-        floor_depth = SHR32(MULT16_16((C*bins<<BITRES),maxDepth), DB_SHIFT);
-        floor_depth = IMAX(floor_depth, target>>2);
-        target = IMIN(target, floor_depth);
-        /*printf("%f %d\n", maxDepth, floor_depth);*/
-     }
-
-     if (st->constrained_vbr || st->bitrate<64000)
-     {
-        opus_val16 rate_factor;
-#ifdef FIXED_POINT
-        rate_factor = MAX16(0,(st->bitrate-32000));
-#else
-        rate_factor = MAX16(0,(1.f/32768)*(st->bitrate-32000));
-#endif
-        if (st->constrained_vbr)
-           rate_factor = MIN16(rate_factor, QCONST16(0.67f, 15));
-        target = base_target + MULT16_32_Q15(rate_factor, target-base_target);
-
-     }
-     /* Don't allow more than doubling the rate */
-     target = IMIN(2*base_target, target);
-
-     /* The current offset is removed from the target and the space used
-        so far is added*/
-     target=target+tell;
-     /* In VBR mode the frame size must not be reduced so much that it would
-         result in the encoder running out of bits.
-        The margin of 2 bytes ensures that none of the bust-prevention logic
-         in the decoder will have triggered so far. */
-     min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2 - nbFilledBytes;
-
-     nbAvailableBytes = (target+(1<<(BITRES+2)))>>(BITRES+3);
-     nbAvailableBytes = IMAX(min_allowed,nbAvailableBytes);
-     nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes) - nbFilledBytes;
-
-     /* By how much did we "miss" the target on that frame */
-     delta = target - vbr_rate;
-
-     target=nbAvailableBytes<<(BITRES+3);
-
-     /*If the frame is silent we don't adjust our drift, otherwise
-       the encoder will shoot to very high rates after hitting a
-       span of silence, but we do allow the bitres to refill.
-       This means that we'll undershoot our target in CVBR/VBR modes
-       on files with lots of silence. */
-     if(silence)
-     {
-       nbAvailableBytes = 2;
-       target = 2*8<<BITRES;
-       delta = 0;
-     }
-
-     if (st->vbr_count < 970)
-     {
-        st->vbr_count++;
-        alpha = celt_rcp(SHL32(EXTEND32(st->vbr_count+20),16));
-     } else
-        alpha = QCONST16(.001f,15);
-     /* How many bits have we used in excess of what we're allowed */
-     if (st->constrained_vbr)
-        st->vbr_reservoir += target - vbr_rate;
-     /*printf ("%d\n", st->vbr_reservoir);*/
-
-     /* Compute the offset we need to apply in order to reach the target */
-     if (st->constrained_vbr)
-     {
-        st->vbr_drift += (opus_int32)MULT16_32_Q15(alpha,(delta*(1<<lm_diff))-st->vbr_offset-st->vbr_drift);
-        st->vbr_offset = -st->vbr_drift;
-     }
-     /*printf ("%d\n", st->vbr_drift);*/
-
-     if (st->constrained_vbr && st->vbr_reservoir < 0)
-     {
-        /* We're under the min value -- increase rate */
-        int adjust = (-st->vbr_reservoir)/(8<<BITRES);
-        /* Unless we're just coding silence */
-        nbAvailableBytes += silence?0:adjust;
-        st->vbr_reservoir = 0;
-        /*printf ("+%d\n", adjust);*/
-     }
-     nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes);
-     /*printf("%d\n", nbCompressedBytes*50*8);*/
-     /* This moves the raw bits to take into account the new compressed size */
-     ec_enc_shrink(enc, nbCompressedBytes);
-   }
-
-   /* Bit allocation */
-   ALLOC(fine_quant, nbEBands, int);
-   ALLOC(pulses, nbEBands, int);
-   ALLOC(fine_priority, nbEBands, int);
-
-   /* bits =           packet size                    - where we are - safety*/
-   bits = (((opus_int32)nbCompressedBytes*8)<<BITRES) - ec_tell_frac(enc) - 1;
-   anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0;
-   bits -= anti_collapse_rsv;
-   codedBands = compute_allocation(mode, st->start, st->end, offsets, cap,
-         alloc_trim, &st->intensity, &dual_stereo, bits, &balance, pulses,
-         fine_quant, fine_priority, C, LM, enc, 1, st->lastCodedBands);
-   st->lastCodedBands = codedBands;
-
-   quant_fine_energy(mode, st->start, st->end, oldBandE, error, fine_quant, enc, C);
-
-#ifdef MEASURE_NORM_MSE
-   float X0[3000];
-   float bandE0[60];
-   c=0; do
-      for (i=0;i<N;i++)
-         X0[i+c*N] = X[i+c*N];
-   while (++c<C);
-   for (i=0;i<C*nbEBands;i++)
-      bandE0[i] = bandE[i];
-#endif
-
-   /* Residual quantisation */
-   ALLOC(collapse_masks, C*nbEBands, unsigned char);
-   quant_all_bands(1, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks,
-         bandE, pulses, shortBlocks, st->spread_decision, dual_stereo, st->intensity, tf_res,
-         nbCompressedBytes*(8<<BITRES)-anti_collapse_rsv, balance, enc, LM, codedBands, &st->rng);
-
-   if (anti_collapse_rsv > 0)
-   {
-      anti_collapse_on = st->consec_transient<2;
-#ifdef FUZZING
-      anti_collapse_on = rand()&0x1;
-#endif
-      ec_enc_bits(enc, anti_collapse_on, 1);
-   }
-   quant_energy_finalise(mode, st->start, st->end, oldBandE, error, fine_quant, fine_priority, nbCompressedBytes*8-ec_tell(enc), enc, C);
-
-   if (silence)
-   {
-      for (i=0;i<C*nbEBands;i++)
-         oldBandE[i] = -QCONST16(28.f,DB_SHIFT);
-   }
-
-#ifdef RESYNTH
-   /* Re-synthesis of the coded audio if required */
-   {
-      celt_sig *out_mem[2];
-
-      log2Amp(mode, st->start, st->end, bandE, oldBandE, C);
-      if (silence)
-      {
-         for (i=0;i<C*nbEBands;i++)
-            bandE[i] = 0;
-      }
-
-#ifdef MEASURE_NORM_MSE
-      measure_norm_mse(mode, X, X0, bandE, bandE0, M, N, C);
-#endif
-      if (anti_collapse_on)
-      {
-         anti_collapse(mode, X, collapse_masks, LM, C, N,
-               st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng);
-      }
-
-      /* Synthesis */
-      denormalise_bands(mode, X, freq, bandE, st->start, effEnd, C, M);
-
-      c=0; do {
-         OPUS_MOVE(st->syn_mem[c], st->syn_mem[c]+N, 2*MAX_PERIOD-N+overlap);
-      } while (++c<CC);
-
-      if (CC==2&&C==1)
-      {
-         for (i=0;i<N;i++)
-            freq[N+i] = freq[i];
-      }
-
-      c=0; do {
-         out_mem[c] = st->syn_mem[c]+2*MAX_PERIOD-N;
-      } while (++c<CC);
-
-      compute_inv_mdcts(mode, shortBlocks, freq, out_mem, CC, LM);
-
-      c=0; do {
-         st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD);
-         st->prefilter_period_old=IMAX(st->prefilter_period_old, COMBFILTER_MINPERIOD);
-         comb_filter(out_mem[c], out_mem[c], st->prefilter_period_old, st->prefilter_period, mode->shortMdctSize,
-               st->prefilter_gain_old, st->prefilter_gain, st->prefilter_tapset_old, st->prefilter_tapset,
-               mode->window, st->overlap);
-         if (LM!=0)
-            comb_filter(out_mem[c]+mode->shortMdctSize, out_mem[c]+mode->shortMdctSize, st->prefilter_period, pitch_index, N-mode->shortMdctSize,
-                  st->prefilter_gain, gain1, st->prefilter_tapset, prefilter_tapset,
-                  mode->window, overlap);
-      } while (++c<CC);
-
-      /* We reuse freq[] as scratch space for the de-emphasis */
-      deemphasis(out_mem, (opus_val16*)pcm, N, CC, st->upsample, mode->preemph, st->preemph_memD, freq);
-      st->prefilter_period_old = st->prefilter_period;
-      st->prefilter_gain_old = st->prefilter_gain;
-      st->prefilter_tapset_old = st->prefilter_tapset;
-   }
-#endif
-
-   st->prefilter_period = pitch_index;
-   st->prefilter_gain = gain1;
-   st->prefilter_tapset = prefilter_tapset;
-#ifdef RESYNTH
-   if (LM!=0)
-   {
-      st->prefilter_period_old = st->prefilter_period;
-      st->prefilter_gain_old = st->prefilter_gain;
-      st->prefilter_tapset_old = st->prefilter_tapset;
-   }
-#endif
-
-   if (CC==2&&C==1) {
-      for (i=0;i<nbEBands;i++)
-         oldBandE[nbEBands+i]=oldBandE[i];
-   }
-
-   if (!isTransient)
-   {
-      for (i=0;i<CC*nbEBands;i++)
-         oldLogE2[i] = oldLogE[i];
-      for (i=0;i<CC*nbEBands;i++)
-         oldLogE[i] = oldBandE[i];
-   } else {
-      for (i=0;i<CC*nbEBands;i++)
-         oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]);
-   }
-   /* In case start or end were to change */
-   c=0; do
-   {
-      for (i=0;i<st->start;i++)
-      {
-         oldBandE[c*nbEBands+i]=0;
-         oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
-      }
-      for (i=st->end;i<nbEBands;i++)
-      {
-         oldBandE[c*nbEBands+i]=0;
-         oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
-      }
-   } while (++c<CC);
-
-   if (isTransient)
-      st->consec_transient++;
-   else
-      st->consec_transient=0;
-   st->rng = enc->rng;
-
-   /* If there's any room left (can only happen for very high rates),
-      it's already filled with zeros */
-   ec_enc_done(enc);
-
-#ifdef CUSTOM_MODES
-   if (st->signalling)
-      nbCompressedBytes++;
-#endif
-
-   RESTORE_STACK;
-   if (ec_get_error(enc))
-      return OPUS_INTERNAL_ERROR;
-   else
-      return nbCompressedBytes;
-}
-
-
-#ifdef CUSTOM_MODES
-
-#ifdef FIXED_POINT
-int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
-{
-   return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL);
-}
-
-#ifndef DISABLE_FLOAT_API
-int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
-{
-   int j, ret, C, N;
-   VARDECL(opus_int16, in);
-   ALLOC_STACK;
-
-   if (pcm==NULL)
-      return OPUS_BAD_ARG;
-
-   C = st->channels;
-   N = frame_size;
-   ALLOC(in, C*N, opus_int16);
-
-   for (j=0;j<C*N;j++)
-     in[j] = FLOAT2INT16(pcm[j]);
-
-   ret=celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL);
-#ifdef RESYNTH
-   for (j=0;j<C*N;j++)
-      ((float*)pcm)[j]=in[j]*(1.f/32768.f);
-#endif
-   RESTORE_STACK;
-   return ret;
-}
-#endif /* DISABLE_FLOAT_API */
-#else
-
-int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
-{
-   int j, ret, C, N;
-   VARDECL(celt_sig, in);
-   ALLOC_STACK;
-
-   if (pcm==NULL)
-      return OPUS_BAD_ARG;
-
-   C=st->channels;
-   N=frame_size;
-   ALLOC(in, C*N, celt_sig);
-   for (j=0;j<C*N;j++) {
-     in[j] = SCALEOUT(pcm[j]);
-   }
-
-   ret = celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL);
-#ifdef RESYNTH
-   for (j=0;j<C*N;j++)
-      ((opus_int16*)pcm)[j] = FLOAT2INT16(in[j]);
-#endif
-   RESTORE_STACK;
-   return ret;
-}
-
-int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
-{
-   return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL);
-}
-
-#endif
-
-#endif /* CUSTOM_MODES */
-
-int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...)
-{
-   va_list ap;
-
-   va_start(ap, request);
-   switch (request)
-   {
-      case OPUS_SET_COMPLEXITY_REQUEST:
-      {
-         int value = va_arg(ap, opus_int32);
-         if (value<0 || value>10)
-            goto bad_arg;
-         st->complexity = value;
-      }
-      break;
-      case CELT_SET_START_BAND_REQUEST:
-      {
-         opus_int32 value = va_arg(ap, opus_int32);
-         if (value<0 || value>=st->mode->nbEBands)
-            goto bad_arg;
-         st->start = value;
-      }
-      break;
-      case CELT_SET_END_BAND_REQUEST:
-      {
-         opus_int32 value = va_arg(ap, opus_int32);
-         if (value<1 || value>st->mode->nbEBands)
-            goto bad_arg;
-         st->end = value;
-      }
-      break;
-      case CELT_SET_PREDICTION_REQUEST:
-      {
-         int value = va_arg(ap, opus_int32);
-         if (value<0 || value>2)
-            goto bad_arg;
-         st->disable_pf = value<=1;
-         st->force_intra = value==0;
-      }
-      break;
-      case OPUS_SET_PACKET_LOSS_PERC_REQUEST:
-      {
-         int value = va_arg(ap, opus_int32);
-         if (value<0 || value>100)
-            goto bad_arg;
-         st->loss_rate = value;
-      }
-      break;
-      case OPUS_SET_VBR_CONSTRAINT_REQUEST:
-      {
-         opus_int32 value = va_arg(ap, opus_int32);
-         st->constrained_vbr = value;
-      }
-      break;
-      case OPUS_SET_VBR_REQUEST:
-      {
-         opus_int32 value = va_arg(ap, opus_int32);
-         st->vbr = value;
-      }
-      break;
-      case OPUS_SET_BITRATE_REQUEST:
-      {
-         opus_int32 value = va_arg(ap, opus_int32);
-         if (value<=500 && value!=OPUS_BITRATE_MAX)
-            goto bad_arg;
-         value = IMIN(value, 260000*st->channels);
-         st->bitrate = value;
-      }
-      break;
-      case CELT_SET_CHANNELS_REQUEST:
-      {
-         opus_int32 value = va_arg(ap, opus_int32);
-         if (value<1 || value>2)
-            goto bad_arg;
-         st->stream_channels = value;
-      }
-      break;
-      case OPUS_SET_LSB_DEPTH_REQUEST:
-      {
-          opus_int32 value = va_arg(ap, opus_int32);
-          if (value<8 || value>24)
-             goto bad_arg;
-          st->lsb_depth=value;
-      }
-      break;
-      case OPUS_GET_LSB_DEPTH_REQUEST:
-      {
-          opus_int32 *value = va_arg(ap, opus_int32*);
-          *value=st->lsb_depth;
-      }
-      break;
-      case OPUS_RESET_STATE:
-      {
-         int i;
-         opus_val16 *oldBandE, *oldLogE, *oldLogE2;
-         oldBandE = (opus_val16*)(st->in_mem+st->channels*(st->overlap+COMBFILTER_MAXPERIOD));
-         oldLogE = oldBandE + st->channels*st->mode->nbEBands;
-         oldLogE2 = oldLogE + st->channels*st->mode->nbEBands;
-         OPUS_CLEAR((char*)&st->ENCODER_RESET_START,
-               opus_custom_encoder_get_size(st->mode, st->channels)-
-               ((char*)&st->ENCODER_RESET_START - (char*)st));
-         for (i=0;i<st->channels*st->mode->nbEBands;i++)
-            oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT);
-         st->vbr_offset = 0;
-         st->delayedIntra = 1;
-         st->spread_decision = SPREAD_NORMAL;
-         st->tonal_average = 256;
-         st->hf_average = 0;
-         st->tapset_decision = 0;
-      }
-      break;
-#ifdef CUSTOM_MODES
-      case CELT_SET_INPUT_CLIPPING_REQUEST:
-      {
-         opus_int32 value = va_arg(ap, opus_int32);
-         st->clip = value;
-      }
-      break;
-#endif
-      case CELT_SET_SIGNALLING_REQUEST:
-      {
-         opus_int32 value = va_arg(ap, opus_int32);
-         st->signalling = value;
-      }
-      break;
-      case CELT_SET_ANALYSIS_REQUEST:
-      {
-         AnalysisInfo *info = va_arg(ap, AnalysisInfo *);
-         if (info)
-            OPUS_COPY(&st->analysis, info, 1);
-      }
-      break;
-      case CELT_GET_MODE_REQUEST:
-      {
-         const CELTMode ** value = va_arg(ap, const CELTMode**);
-         if (value==0)
-            goto bad_arg;
-         *value=st->mode;
-      }
-      break;
-      case OPUS_GET_FINAL_RANGE_REQUEST:
-      {
-         opus_uint32 * value = va_arg(ap, opus_uint32 *);
-         if (value==0)
-            goto bad_arg;
-         *value=st->rng;
-      }
-      break;
-      default:
-         goto bad_request;
-   }
-   va_end(ap);
-   return OPUS_OK;
-bad_arg:
-   va_end(ap);
-   return OPUS_BAD_ARG;
-bad_request:
-   va_end(ap);
-   return OPUS_UNIMPLEMENTED;
-}
-
-/**********************************************************************/
-/*                                                                    */
-/*                             DECODER                                */
-/*                                                                    */
-/**********************************************************************/
-#define DECODE_BUFFER_SIZE 2048
-
-/** Decoder state
- @brief Decoder state
- */
-struct OpusCustomDecoder {
-   const OpusCustomMode *mode;
-   int overlap;
-   int channels;
-   int stream_channels;
-
-   int downsample;
-   int start, end;
-   int signalling;
-
-   /* Everything beyond this point gets cleared on a reset */
-#define DECODER_RESET_START rng
-
-   opus_uint32 rng;
-   int error;
-   int last_pitch_index;
-   int loss_count;
-   int postfilter_period;
-   int postfilter_period_old;
-   opus_val16 postfilter_gain;
-   opus_val16 postfilter_gain_old;
-   int postfilter_tapset;
-   int postfilter_tapset_old;
-
-   celt_sig preemph_memD[2];
-
-   celt_sig _decode_mem[1]; /* Size = channels*(DECODE_BUFFER_SIZE+mode->overlap) */
-   /* opus_val16 lpc[],  Size = channels*LPC_ORDER */
-   /* opus_val16 oldEBands[], Size = 2*mode->nbEBands */
-   /* opus_val16 oldLogE[], Size = 2*mode->nbEBands */
-   /* opus_val16 oldLogE2[], Size = 2*mode->nbEBands */
-   /* opus_val16 backgroundLogE[], Size = 2*mode->nbEBands */
-};
-
-int celt_decoder_get_size(int channels)
-{
-   const CELTMode *mode = opus_custom_mode_create(48000, 960, NULL);
-   return opus_custom_decoder_get_size(mode, channels);
-}
-
-OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_get_size(const CELTMode *mode, int channels)
-{
-   int size = sizeof(struct CELTDecoder)
-            + (channels*(DECODE_BUFFER_SIZE+mode->overlap)-1)*sizeof(celt_sig)
-            + channels*LPC_ORDER*sizeof(opus_val16)
-            + 4*2*mode->nbEBands*sizeof(opus_val16);
-   return size;
-}
-
-#ifdef CUSTOM_MODES
-CELTDecoder *opus_custom_decoder_create(const CELTMode *mode, int channels, int *error)
-{
-   int ret;
-   CELTDecoder *st = (CELTDecoder *)opus_alloc(opus_custom_decoder_get_size(mode, channels));
-   ret = opus_custom_decoder_init(st, mode, channels);
-   if (ret != OPUS_OK)
-   {
-      opus_custom_decoder_destroy(st);
-      st = NULL;
-   }
-   if (error)
-      *error = ret;
-   return st;
-}
-#endif /* CUSTOM_MODES */
-
-int celt_decoder_init(CELTDecoder *st, opus_int32 sampling_rate, int channels)
-{
-   int ret;
-   ret = opus_custom_decoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels);
-   if (ret != OPUS_OK)
-      return ret;
-   st->downsample = resampling_factor(sampling_rate);
-   if (st->downsample==0)
-      return OPUS_BAD_ARG;
-   else
-      return OPUS_OK;
-}
-
-OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_init(CELTDecoder *st, const CELTMode *mode, int channels)
-{
-   if (channels < 0 || channels > 2)
-      return OPUS_BAD_ARG;
-
-   if (st==NULL)
-      return OPUS_ALLOC_FAIL;
-
-   OPUS_CLEAR((char*)st, opus_custom_decoder_get_size(mode, channels));
-
-   st->mode = mode;
-   st->overlap = mode->overlap;
-   st->stream_channels = st->channels = channels;
-
-   st->downsample = 1;
-   st->start = 0;
-   st->end = st->mode->effEBands;
-   st->signalling = 1;
-
-   st->loss_count = 0;
-
-   opus_custom_decoder_ctl(st, OPUS_RESET_STATE);
-
-   return OPUS_OK;
-}
-
-#ifdef CUSTOM_MODES
-void opus_custom_decoder_destroy(CELTDecoder *st)
-{
-   opus_free(st);
-}
-#endif /* CUSTOM_MODES */
-
-static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, opus_val16 * OPUS_RESTRICT pcm, int N, int LM)
-{
-   int c;
-   int pitch_index;
-   opus_val16 fade = Q15ONE;
-   int i, len;
-   const int C = st->channels;
-   int offset;
-   celt_sig *out_mem[2];
-   celt_sig *decode_mem[2];
-   opus_val16 *lpc;
-   opus_val32 *out_syn[2];
-   opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE;
-   const OpusCustomMode *mode;
-   int nbEBands;
-   int overlap;
-   const opus_int16 *eBands;
-   VARDECL(celt_sig, scratch);
-   SAVE_STACK;
-
-   mode = st->mode;
-   nbEBands = mode->nbEBands;
-   overlap = mode->overlap;
-   eBands = mode->eBands;
-
-   c=0; do {
-      decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+st->overlap);
-      out_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE-MAX_PERIOD;
-   } while (++c<C);
-   lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*C);
-   oldBandE = lpc+C*LPC_ORDER;
-   oldLogE = oldBandE + 2*nbEBands;
-   oldLogE2 = oldLogE + 2*nbEBands;
-   backgroundLogE = oldLogE2  + 2*nbEBands;
-
-   c=0; do {
-      out_syn[c] = out_mem[c]+MAX_PERIOD-N;
-   } while (++c<C);
-
-   len = N+overlap;
-
-   if (st->loss_count >= 5 || st->start!=0)
-   {
-      /* Noise-based PLC/CNG */
-      VARDECL(celt_sig, freq);
-      VARDECL(celt_norm, X);
-      VARDECL(celt_ener, bandE);
-      opus_uint32 seed;
-      int effEnd;
-
-      effEnd = st->end;
-      if (effEnd > mode->effEBands)
-         effEnd = mode->effEBands;
-
-      ALLOC(freq, C*N, celt_sig); /**< Interleaved signal MDCTs */
-      ALLOC(X, C*N, celt_norm);   /**< Interleaved normalised MDCTs */
-      ALLOC(bandE, nbEBands*C, celt_ener);
-
-      if (st->loss_count >= 5)
-         log2Amp(mode, st->start, st->end, bandE, backgroundLogE, C);
-      else {
-         /* Energy decay */
-         opus_val16 decay = st->loss_count==0 ? QCONST16(1.5f, DB_SHIFT) : QCONST16(.5f, DB_SHIFT);
-         c=0; do
-         {
-            for (i=st->start;i<st->end;i++)
-               oldBandE[c*nbEBands+i] -= decay;
-         } while (++c<C);
-         log2Amp(mode, st->start, st->end, bandE, oldBandE, C);
-      }
-      seed = st->rng;
-      for (c=0;c<C;c++)
-      {
-         for (i=st->start;i<mode->effEBands;i++)
-         {
-            int j;
-            int boffs;
-            int blen;
-            boffs = N*c+(eBands[i]<<LM);
-            blen = (eBands[i+1]-eBands[i])<<LM;
-            for (j=0;j<blen;j++)
-            {
-               seed = celt_lcg_rand(seed);
-               X[boffs+j] = (celt_norm)((opus_int32)seed>>20);
-            }
-            renormalise_vector(X+boffs, blen, Q15ONE);
-         }
-      }
-      st->rng = seed;
-
-      denormalise_bands(mode, X, freq, bandE, st->start, mode->effEBands, C, 1<<LM);
-
-      c=0; do
-         for (i=0;i<eBands[st->start]<<LM;i++)
-            freq[c*N+i] = 0;
-      while (++c<C);
-      c=0; do {
-         int bound = eBands[effEnd]<<LM;
-         if (st->downsample!=1)
-            bound = IMIN(bound, N/st->downsample);
-         for (i=bound;i<N;i++)
-            freq[c*N+i] = 0;
-      } while (++c<C);
-      c=0; do {
-         OPUS_MOVE(decode_mem[c], decode_mem[c]+N, DECODE_BUFFER_SIZE-N+overlap);
-      } while (++c<C);
-      compute_inv_mdcts(mode, 0, freq, out_syn, C, LM);
-   } else {
-      /* Pitch-based PLC */
-      VARDECL(opus_val32, e);
-
-      if (st->loss_count == 0)
-      {
-         opus_val16 pitch_buf[DECODE_BUFFER_SIZE>>1];
-         /* Corresponds to a min pitch of 67 Hz. It's possible to save CPU in this
-         search by using only part of the decode buffer */
-         int poffset = 720;
-         pitch_downsample(decode_mem, pitch_buf, DECODE_BUFFER_SIZE, C);
-         /* Max pitch is 100 samples (480 Hz) */
-         pitch_search(pitch_buf+((poffset)>>1), pitch_buf, DECODE_BUFFER_SIZE-poffset,
-               poffset-100, &pitch_index);
-         pitch_index = poffset-pitch_index;
-         st->last_pitch_index = pitch_index;
-      } else {
-         pitch_index = st->last_pitch_index;
-         fade = QCONST16(.8f,15);
-      }
-
-      ALLOC(e, MAX_PERIOD+2*overlap, opus_val32);
-      c=0; do {
-         opus_val16 exc[MAX_PERIOD];
-         opus_val32 ac[LPC_ORDER+1];
-         opus_val16 decay = 1;
-         opus_val32 S1=0;
-         opus_val16 mem[LPC_ORDER]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
-
-         offset = MAX_PERIOD-pitch_index;
-         for (i=0;i<MAX_PERIOD;i++)
-            exc[i] = ROUND16(out_mem[c][i], SIG_SHIFT);
-
-         if (st->loss_count == 0)
-         {
-            _celt_autocorr(exc, ac, mode->window, overlap,
-                  LPC_ORDER, MAX_PERIOD);
-
-            /* Noise floor -40 dB */
-#ifdef FIXED_POINT
-            ac[0] += SHR32(ac[0],13);
-#else
-            ac[0] *= 1.0001f;
-#endif
-            /* Lag windowing */
-            for (i=1;i<=LPC_ORDER;i++)
-            {
-               /*ac[i] *= exp(-.5*(2*M_PI*.002*i)*(2*M_PI*.002*i));*/
-#ifdef FIXED_POINT
-               ac[i] -= MULT16_32_Q15(2*i*i, ac[i]);
-#else
-               ac[i] -= ac[i]*(.008f*i)*(.008f*i);
-#endif
-            }
-
-            _celt_lpc(lpc+c*LPC_ORDER, ac, LPC_ORDER);
-         }
-         for (i=0;i<LPC_ORDER;i++)
-            mem[i] = ROUND16(out_mem[c][MAX_PERIOD-1-i], SIG_SHIFT);
-         celt_fir(exc, lpc+c*LPC_ORDER, exc, MAX_PERIOD, LPC_ORDER, mem);
-         /*for (i=0;i<MAX_PERIOD;i++)printf("%d ", exc[i]); printf("\n");*/
-         /* Check if the waveform is decaying (and if so how fast) */
-         {
-            opus_val32 E1=1, E2=1;
-            int period;
-            if (pitch_index <= MAX_PERIOD/2)
-               period = pitch_index;
-            else
-               period = MAX_PERIOD/2;
-            for (i=0;i<period;i++)
-            {
-               E1 += SHR32(MULT16_16(exc[MAX_PERIOD-period+i],exc[MAX_PERIOD-period+i]),8);
-               E2 += SHR32(MULT16_16(exc[MAX_PERIOD-2*period+i],exc[MAX_PERIOD-2*period+i]),8);
-            }
-            if (E1 > E2)
-               E1 = E2;
-            decay = celt_sqrt(frac_div32(SHR32(E1,1),E2));
-         }
-
-         /* Copy excitation, taking decay into account */
-         for (i=0;i<len+overlap;i++)
-         {
-            opus_val16 tmp;
-            if (offset+i >= MAX_PERIOD)
-            {
-               offset -= pitch_index;
-               decay = MULT16_16_Q15(decay, decay);
-            }
-            e[i] = SHL32(EXTEND32(MULT16_16_Q15(decay, exc[offset+i])), SIG_SHIFT);
-            tmp = ROUND16(out_mem[c][offset+i],SIG_SHIFT);
-            S1 += SHR32(MULT16_16(tmp,tmp),8);
-         }
-         for (i=0;i<LPC_ORDER;i++)
-            mem[i] = ROUND16(out_mem[c][MAX_PERIOD-1-i], SIG_SHIFT);
-         for (i=0;i<len+overlap;i++)
-            e[i] = MULT16_32_Q15(fade, e[i]);
-         celt_iir(e, lpc+c*LPC_ORDER, e, len+overlap, LPC_ORDER, mem);
-
-         {
-            opus_val32 S2=0;
-            for (i=0;i<len+overlap;i++)
-            {
-               opus_val16 tmp = ROUND16(e[i],SIG_SHIFT);
-               S2 += SHR32(MULT16_16(tmp,tmp),8);
-            }
-            /* This checks for an "explosion" in the synthesis */
-#ifdef FIXED_POINT
-            if (!(S1 > SHR32(S2,2)))
-#else
-               /* Float test is written this way to catch NaNs at the same time */
-               if (!(S1 > 0.2f*S2))
-#endif
-               {
-                  for (i=0;i<len+overlap;i++)
-                     e[i] = 0;
-               } else if (S1 < S2)
-               {
-                  opus_val16 ratio = celt_sqrt(frac_div32(SHR32(S1,1)+1,S2+1));
-                  for (i=0;i<len+overlap;i++)
-                     e[i] = MULT16_32_Q15(ratio, e[i]);
-               }
-         }
-
-         /* Apply post-filter to the MDCT overlap of the previous frame */
-         comb_filter(out_mem[c]+MAX_PERIOD, out_mem[c]+MAX_PERIOD, st->postfilter_period, st->postfilter_period, st->overlap,
-               st->postfilter_gain, st->postfilter_gain, st->postfilter_tapset, st->postfilter_tapset,
-               NULL, 0);
-
-         for (i=0;i<MAX_PERIOD+overlap-N;i++)
-            out_mem[c][i] = out_mem[c][N+i];
-
-         /* Apply TDAC to the concealed audio so that it blends with the
-         previous and next frames */
-         for (i=0;i<overlap/2;i++)
-         {
-            opus_val32 tmp;
-            tmp = MULT16_32_Q15(mode->window[i],           e[N+overlap-1-i]) +
-                  MULT16_32_Q15(mode->window[overlap-i-1], e[N+i          ]);
-            out_mem[c][MAX_PERIOD+i] = MULT16_32_Q15(mode->window[overlap-i-1], tmp);
-            out_mem[c][MAX_PERIOD+overlap-i-1] = MULT16_32_Q15(mode->window[i], tmp);
-         }
-         for (i=0;i<N;i++)
-            out_mem[c][MAX_PERIOD-N+i] = e[i];
-
-         /* Apply pre-filter to the MDCT overlap for the next frame (post-filter will be applied then) */
-         comb_filter(e, out_mem[c]+MAX_PERIOD, st->postfilter_period, st->postfilter_period, st->overlap,
-               -st->postfilter_gain, -st->postfilter_gain, st->postfilter_tapset, st->postfilter_tapset,
-               NULL, 0);
-         for (i=0;i<overlap;i++)
-            out_mem[c][MAX_PERIOD+i] = e[i];
-      } while (++c<C);
-   }
-
-   ALLOC(scratch, N, celt_sig);
-   deemphasis(out_syn, pcm, N, C, st->downsample, mode->preemph, st->preemph_memD, scratch);
-
-   st->loss_count++;
-
-   RESTORE_STACK;
-}
-
-int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_val16 * OPUS_RESTRICT pcm, int frame_size, ec_dec *dec)
-{
-   int c, i, N;
-   int spread_decision;
-   opus_int32 bits;
-   ec_dec _dec;
-   VARDECL(celt_sig, freq);
-   VARDECL(celt_norm, X);
-   VARDECL(celt_ener, bandE);
-   VARDECL(int, fine_quant);
-   VARDECL(int, pulses);
-   VARDECL(int, cap);
-   VARDECL(int, offsets);
-   VARDECL(int, fine_priority);
-   VARDECL(int, tf_res);
-   VARDECL(unsigned char, collapse_masks);
-   celt_sig *out_mem[2];
-   celt_sig *decode_mem[2];
-   celt_sig *out_syn[2];
-   opus_val16 *lpc;
-   opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE;
-
-   int shortBlocks;
-   int isTransient;
-   int intra_ener;
-   const int CC = st->channels;
-   int LM, M;
-   int effEnd;
-   int codedBands;
-   int alloc_trim;
-   int postfilter_pitch;
-   opus_val16 postfilter_gain;
-   int intensity=0;
-   int dual_stereo=0;
-   opus_int32 total_bits;
-   opus_int32 balance;
-   opus_int32 tell;
-   int dynalloc_logp;
-   int postfilter_tapset;
-   int anti_collapse_rsv;
-   int anti_collapse_on=0;
-   int silence;
-   int C = st->stream_channels;
-   const OpusCustomMode *mode;
-   int nbEBands;
-   int overlap;
-   const opus_int16 *eBands;
-   ALLOC_STACK;
-
-   mode = st->mode;
-   nbEBands = mode->nbEBands;
-   overlap = mode->overlap;
-   eBands = mode->eBands;
-   frame_size *= st->downsample;
-
-   c=0; do {
-      decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+overlap);
-      out_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE-MAX_PERIOD;
-   } while (++c<CC);
-   lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+overlap)*CC);
-   oldBandE = lpc+CC*LPC_ORDER;
-   oldLogE = oldBandE + 2*nbEBands;
-   oldLogE2 = oldLogE + 2*nbEBands;
-   backgroundLogE = oldLogE2  + 2*nbEBands;
-
-#ifdef CUSTOM_MODES
-   if (st->signalling && data!=NULL)
-   {
-      int data0=data[0];
-      /* Convert "standard mode" to Opus header */
-      if (mode->Fs==48000 && mode->shortMdctSize==120)
-      {
-         data0 = fromOpus(data0);
-         if (data0<0)
-            return OPUS_INVALID_PACKET;
-      }
-      st->end = IMAX(1, mode->effEBands-2*(data0>>5));
-      LM = (data0>>3)&0x3;
-      C = 1 + ((data0>>2)&0x1);
-      data++;
-      len--;
-      if (LM>mode->maxLM)
-         return OPUS_INVALID_PACKET;
-      if (frame_size < mode->shortMdctSize<<LM)
-         return OPUS_BUFFER_TOO_SMALL;
-      else
-         frame_size = mode->shortMdctSize<<LM;
-   } else {
-#else
-   {
-#endif
-      for (LM=0;LM<=mode->maxLM;LM++)
-         if (mode->shortMdctSize<<LM==frame_size)
-            break;
-      if (LM>mode->maxLM)
-         return OPUS_BAD_ARG;
-   }
-   M=1<<LM;
-
-   if (len<0 || len>1275 || pcm==NULL)
-      return OPUS_BAD_ARG;
-
-   N = M*mode->shortMdctSize;
-
-   effEnd = st->end;
-   if (effEnd > mode->effEBands)
-      effEnd = mode->effEBands;
-
-   if (data == NULL || len<=1)
-   {
-      celt_decode_lost(st, pcm, N, LM);
-      RESTORE_STACK;
-      return frame_size/st->downsample;
-   }
-
-   if (dec == NULL)
-   {
-      ec_dec_init(&_dec,(unsigned char*)data,len);
-      dec = &_dec;
-   }
-
-   if (C==1)
-   {
-      for (i=0;i<nbEBands;i++)
-         oldBandE[i]=MAX16(oldBandE[i],oldBandE[nbEBands+i]);
-   }
-
-   total_bits = len*8;
-   tell = ec_tell(dec);
-
-   if (tell >= total_bits)
-      silence = 1;
-   else if (tell==1)
-      silence = ec_dec_bit_logp(dec, 15);
-   else
-      silence = 0;
-   if (silence)
-   {
-      /* Pretend we've read all the remaining bits */
-      tell = len*8;
-      dec->nbits_total+=tell-ec_tell(dec);
-   }
-
-   postfilter_gain = 0;
-   postfilter_pitch = 0;
-   postfilter_tapset = 0;
-   if (st->start==0 && tell+16 <= total_bits)
-   {
-      if(ec_dec_bit_logp(dec, 1))
-      {
-         int qg, octave;
-         octave = ec_dec_uint(dec, 6);
-         postfilter_pitch = (16<<octave)+ec_dec_bits(dec, 4+octave)-1;
-         qg = ec_dec_bits(dec, 3);
-         if (ec_tell(dec)+2<=total_bits)
-            postfilter_tapset = ec_dec_icdf(dec, tapset_icdf, 2);
-         postfilter_gain = QCONST16(.09375f,15)*(qg+1);
-      }
-      tell = ec_tell(dec);
-   }
-
-   if (LM > 0 && tell+3 <= total_bits)
-   {
-      isTransient = ec_dec_bit_logp(dec, 3);
-      tell = ec_tell(dec);
-   }
-   else
-      isTransient = 0;
-
-   if (isTransient)
-      shortBlocks = M;
-   else
-      shortBlocks = 0;
-
-   /* Decode the global flags (first symbols in the stream) */
-   intra_ener = tell+3<=total_bits ? ec_dec_bit_logp(dec, 3) : 0;
-   /* Get band energies */
-   unquant_coarse_energy(mode, st->start, st->end, oldBandE,
-         intra_ener, dec, C, LM);
-
-   ALLOC(tf_res, nbEBands, int);
-   tf_decode(st->start, st->end, isTransient, tf_res, LM, dec);
-
-   tell = ec_tell(dec);
-   spread_decision = SPREAD_NORMAL;
-   if (tell+4 <= total_bits)
-      spread_decision = ec_dec_icdf(dec, spread_icdf, 5);
-
-   ALLOC(cap, nbEBands, int);
-
-   init_caps(mode,cap,LM,C);
-
-   ALLOC(offsets, nbEBands, int);
-
-   dynalloc_logp = 6;
-   total_bits<<=BITRES;
-   tell = ec_tell_frac(dec);
-   for (i=st->start;i<st->end;i++)
-   {
-      int width, quanta;
-      int dynalloc_loop_logp;
-      int boost;
-      width = C*(eBands[i+1]-eBands[i])<<LM;
-      /* quanta is 6 bits, but no more than 1 bit/sample
-         and no less than 1/8 bit/sample */
-      quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width));
-      dynalloc_loop_logp = dynalloc_logp;
-      boost = 0;
-      while (tell+(dynalloc_loop_logp<<BITRES) < total_bits && boost < cap[i])
-      {
-         int flag;
-         flag = ec_dec_bit_logp(dec, dynalloc_loop_logp);
-         tell = ec_tell_frac(dec);
-         if (!flag)
-            break;
-         boost += quanta;
-         total_bits -= quanta;
-         dynalloc_loop_logp = 1;
-      }
-      offsets[i] = boost;
-      /* Making dynalloc more likely */
-      if (boost>0)
-         dynalloc_logp = IMAX(2, dynalloc_logp-1);
-   }
-
-   ALLOC(fine_quant, nbEBands, int);
-   alloc_trim = tell+(6<<BITRES) <= total_bits ?
-         ec_dec_icdf(dec, trim_icdf, 7) : 5;
-
-   bits = (((opus_int32)len*8)<<BITRES) - ec_tell_frac(dec) - 1;
-   anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0;
-   bits -= anti_collapse_rsv;
-
-   ALLOC(pulses, nbEBands, int);
-   ALLOC(fine_priority, nbEBands, int);
-
-   codedBands = compute_allocation(mode, st->start, st->end, offsets, cap,
-         alloc_trim, &intensity, &dual_stereo, bits, &balance, pulses,
-         fine_quant, fine_priority, C, LM, dec, 0, 0);
-
-   unquant_fine_energy(mode, st->start, st->end, oldBandE, fine_quant, dec, C);
-
-   /* Decode fixed codebook */
-   ALLOC(collapse_masks, C*nbEBands, unsigned char);
-   ALLOC(X, C*N, celt_norm);   /**< Interleaved normalised MDCTs */
-
-   quant_all_bands(0, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks,
-         NULL, pulses, shortBlocks, spread_decision, dual_stereo, intensity, tf_res,
-         len*(8<<BITRES)-anti_collapse_rsv, balance, dec, LM, codedBands, &st->rng);
-
-   if (anti_collapse_rsv > 0)
-   {
-      anti_collapse_on = ec_dec_bits(dec, 1);
-   }
-
-   unquant_energy_finalise(mode, st->start, st->end, oldBandE,
-         fine_quant, fine_priority, len*8-ec_tell(dec), dec, C);
-
-   if (anti_collapse_on)
-      anti_collapse(mode, X, collapse_masks, LM, C, N,
-            st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng);
-
-   ALLOC(bandE, nbEBands*C, celt_ener);
-
-   log2Amp(mode, st->start, st->end, bandE, oldBandE, C);
-
-   if (silence)
-   {
-      for (i=0;i<C*nbEBands;i++)
-      {
-         bandE[i] = 0;
-         oldBandE[i] = -QCONST16(28.f,DB_SHIFT);
-      }
-   }
-   ALLOC(freq, IMAX(CC,C)*N, celt_sig); /**< Interleaved signal MDCTs */
-   /* Synthesis */
-   denormalise_bands(mode, X, freq, bandE, st->start, effEnd, C, M);
-
-   c=0; do {
-      OPUS_MOVE(decode_mem[c], decode_mem[c]+N, DECODE_BUFFER_SIZE-N+overlap);
-   } while (++c<CC);
-
-   c=0; do
-      for (i=0;i<M*eBands[st->start];i++)
-         freq[c*N+i] = 0;
-   while (++c<C);
-   c=0; do {
-      int bound = M*eBands[effEnd];
-      if (st->downsample!=1)
-         bound = IMIN(bound, N/st->downsample);
-      for (i=bound;i<N;i++)
-         freq[c*N+i] = 0;
-   } while (++c<C);
-
-   c=0; do {
-      out_syn[c] = out_mem[c]+MAX_PERIOD-N;
-   } while (++c<CC);
-
-   if (CC==2&&C==1)
-   {
-      for (i=0;i<N;i++)
-         freq[N+i] = freq[i];
-   }
-   if (CC==1&&C==2)
-   {
-      for (i=0;i<N;i++)
-         freq[i] = HALF32(ADD32(freq[i],freq[N+i]));
-   }
-
-   /* Compute inverse MDCTs */
-   compute_inv_mdcts(mode, shortBlocks, freq, out_syn, CC, LM);
-
-   c=0; do {
-      st->postfilter_period=IMAX(st->postfilter_period, COMBFILTER_MINPERIOD);
-      st->postfilter_period_old=IMAX(st->postfilter_period_old, COMBFILTER_MINPERIOD);
-      comb_filter(out_syn[c], out_syn[c], st->postfilter_period_old, st->postfilter_period, mode->shortMdctSize,
-            st->postfilter_gain_old, st->postfilter_gain, st->postfilter_tapset_old, st->postfilter_tapset,
-            mode->window, overlap);
-      if (LM!=0)
-         comb_filter(out_syn[c]+mode->shortMdctSize, out_syn[c]+mode->shortMdctSize, st->postfilter_period, postfilter_pitch, N-mode->shortMdctSize,
-               st->postfilter_gain, postfilter_gain, st->postfilter_tapset, postfilter_tapset,
-               mode->window, overlap);
-
-   } while (++c<CC);
-   st->postfilter_period_old = st->postfilter_period;
-   st->postfilter_gain_old = st->postfilter_gain;
-   st->postfilter_tapset_old = st->postfilter_tapset;
-   st->postfilter_period = postfilter_pitch;
-   st->postfilter_gain = postfilter_gain;
-   st->postfilter_tapset = postfilter_tapset;
-   if (LM!=0)
-   {
-      st->postfilter_period_old = st->postfilter_period;
-      st->postfilter_gain_old = st->postfilter_gain;
-      st->postfilter_tapset_old = st->postfilter_tapset;
-   }
-
-   if (C==1) {
-      for (i=0;i<nbEBands;i++)
-         oldBandE[nbEBands+i]=oldBandE[i];
-   }
-
-   /* In case start or end were to change */
-   if (!isTransient)
-   {
-      for (i=0;i<2*nbEBands;i++)
-         oldLogE2[i] = oldLogE[i];
-      for (i=0;i<2*nbEBands;i++)
-         oldLogE[i] = oldBandE[i];
-      for (i=0;i<2*nbEBands;i++)
-         backgroundLogE[i] = MIN16(backgroundLogE[i] + M*QCONST16(0.001f,DB_SHIFT), oldBandE[i]);
-   } else {
-      for (i=0;i<2*nbEBands;i++)
-         oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]);
-   }
-   c=0; do
-   {
-      for (i=0;i<st->start;i++)
-      {
-         oldBandE[c*nbEBands+i]=0;
-         oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
-      }
-      for (i=st->end;i<nbEBands;i++)
-      {
-         oldBandE[c*nbEBands+i]=0;
-         oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
-      }
-   } while (++c<2);
-   st->rng = dec->rng;
-
-   /* We reuse freq[] as scratch space for the de-emphasis */
-   deemphasis(out_syn, pcm, N, CC, st->downsample, mode->preemph, st->preemph_memD, freq);
-   st->loss_count = 0;
-   RESTORE_STACK;
-   if (ec_tell(dec) > 8*len)
-      return OPUS_INTERNAL_ERROR;
-   if(ec_get_error(dec))
-      st->error = 1;
-   return frame_size/st->downsample;
-}
-
-
-#ifdef CUSTOM_MODES
-
-#ifdef FIXED_POINT
-int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size)
-{
-   return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL);
-}
-
-#ifndef DISABLE_FLOAT_API
-int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size)
-{
-   int j, ret, C, N;
-   VARDECL(opus_int16, out);
-   ALLOC_STACK;
-
-   if (pcm==NULL)
-      return OPUS_BAD_ARG;
-
-   C = st->channels;
-   N = frame_size;
-
-   ALLOC(out, C*N, opus_int16);
-   ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL);
-   if (ret>0)
-      for (j=0;j<C*ret;j++)
-         pcm[j]=out[j]*(1.f/32768.f);
-
-   RESTORE_STACK;
-   return ret;
-}
-#endif /* DISABLE_FLOAT_API */
-
-#else
-
-int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size)
-{
-   return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL);
-}
-
-int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size)
-{
-   int j, ret, C, N;
-   VARDECL(celt_sig, out);
-   ALLOC_STACK;
-
-   if (pcm==NULL)
-      return OPUS_BAD_ARG;
-
-   C = st->channels;
-   N = frame_size;
-   ALLOC(out, C*N, celt_sig);
-
-   ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL);
-
-   if (ret>0)
-      for (j=0;j<C*ret;j++)
-         pcm[j] = FLOAT2INT16 (out[j]);
-
-   RESTORE_STACK;
-   return ret;
-}
-
-#endif
-#endif /* CUSTOM_MODES */
-
-int opus_custom_decoder_ctl(CELTDecoder * OPUS_RESTRICT st, int request, ...)
-{
-   va_list ap;
-
-   va_start(ap, request);
-   switch (request)
-   {
-      case CELT_SET_START_BAND_REQUEST:
-      {
-         opus_int32 value = va_arg(ap, opus_int32);
-         if (value<0 || value>=st->mode->nbEBands)
-            goto bad_arg;
-         st->start = value;
-      }
-      break;
-      case CELT_SET_END_BAND_REQUEST:
-      {
-         opus_int32 value = va_arg(ap, opus_int32);
-         if (value<1 || value>st->mode->nbEBands)
-            goto bad_arg;
-         st->end = value;
-      }
-      break;
-      case CELT_SET_CHANNELS_REQUEST:
-      {
-         opus_int32 value = va_arg(ap, opus_int32);
-         if (value<1 || value>2)
-            goto bad_arg;
-         st->stream_channels = value;
-      }
-      break;
-      case CELT_GET_AND_CLEAR_ERROR_REQUEST:
-      {
-         opus_int32 *value = va_arg(ap, opus_int32*);
-         if (value==NULL)
-            goto bad_arg;
-         *value=st->error;
-         st->error = 0;
-      }
-      break;
-      case OPUS_GET_LOOKAHEAD_REQUEST:
-      {
-         opus_int32 *value = va_arg(ap, opus_int32*);
-         if (value==NULL)
-            goto bad_arg;
-         *value = st->overlap/st->downsample;
-      }
-      break;
-      case OPUS_RESET_STATE:
-      {
-         int i;
-         opus_val16 *lpc, *oldBandE, *oldLogE, *oldLogE2;
-         lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*st->channels);
-         oldBandE = lpc+st->channels*LPC_ORDER;
-         oldLogE = oldBandE + 2*st->mode->nbEBands;
-         oldLogE2 = oldLogE + 2*st->mode->nbEBands;
-         OPUS_CLEAR((char*)&st->DECODER_RESET_START,
-               opus_custom_decoder_get_size(st->mode, st->channels)-
-               ((char*)&st->DECODER_RESET_START - (char*)st));
-         for (i=0;i<2*st->mode->nbEBands;i++)
-            oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT);
-      }
-      break;
-      case OPUS_GET_PITCH_REQUEST:
-      {
-         opus_int32 *value = va_arg(ap, opus_int32*);
-         if (value==NULL)
-            goto bad_arg;
-         *value = st->postfilter_period;
-      }
-      break;
-#ifdef OPUS_BUILD
-      case CELT_GET_MODE_REQUEST:
-      {
-         const CELTMode ** value = va_arg(ap, const CELTMode**);
-         if (value==0)
-            goto bad_arg;
-         *value=st->mode;
-      }
-      break;
-      case CELT_SET_SIGNALLING_REQUEST:
-      {
-         opus_int32 value = va_arg(ap, opus_int32);
-         st->signalling = value;
-      }
-      break;
-      case OPUS_GET_FINAL_RANGE_REQUEST:
-      {
-         opus_uint32 * value = va_arg(ap, opus_uint32 *);
-         if (value==0)
-            goto bad_arg;
-         *value=st->rng;
-      }
-      break;
-#endif
-      default:
-         goto bad_request;
-   }
-   va_end(ap);
-   return OPUS_OK;
-bad_arg:
-   va_end(ap);
-   return OPUS_BAD_ARG;
-bad_request:
-      va_end(ap);
-  return OPUS_UNIMPLEMENTED;
-}
-
 
 
 const char *opus_strerror(int error)
index 023925c..a8e8c7f 100644 (file)
@@ -128,6 +128,79 @@ int celt_decode_with_ec(OpusCustomDecoder * OPUS_RESTRICT st, const unsigned cha
 #define celt_encoder_ctl opus_custom_encoder_ctl
 #define celt_decoder_ctl opus_custom_decoder_ctl
 
+
+#ifndef OPUS_VERSION
+#define OPUS_VERSION "unknown"
+#endif
+
+#ifdef CUSTOM_MODES
+#define OPUS_CUSTOM_NOSTATIC
+#else
+#define OPUS_CUSTOM_NOSTATIC static inline
+#endif
+
+static const unsigned char trim_icdf[11] = {126, 124, 119, 109, 87, 41, 19, 9, 4, 2, 0};
+/* Probs: NONE: 21.875%, LIGHT: 6.25%, NORMAL: 65.625%, AGGRESSIVE: 6.25% */
+static const unsigned char spread_icdf[4] = {25, 23, 2, 0};
+
+static const unsigned char tapset_icdf[3]={2,1,0};
+
+#ifdef CUSTOM_MODES
+static const unsigned char toOpusTable[20] = {
+      0xE0, 0xE8, 0xF0, 0xF8,
+      0xC0, 0xC8, 0xD0, 0xD8,
+      0xA0, 0xA8, 0xB0, 0xB8,
+      0x00, 0x00, 0x00, 0x00,
+      0x80, 0x88, 0x90, 0x98,
+};
+
+static const unsigned char fromOpusTable[16] = {
+      0x80, 0x88, 0x90, 0x98,
+      0x40, 0x48, 0x50, 0x58,
+      0x20, 0x28, 0x30, 0x38,
+      0x00, 0x08, 0x10, 0x18
+};
+
+static inline int toOpus(unsigned char c)
+{
+   int ret=0;
+   if (c<0xA0)
+      ret = toOpusTable[c>>3];
+   if (ret == 0)
+      return -1;
+   else
+      return ret|(c&0x7);
+}
+
+static inline int fromOpus(unsigned char c)
+{
+   if (c<0x80)
+      return -1;
+   else
+      return fromOpusTable[(c>>3)-16] | (c&0x7);
+}
+#endif /* CUSTOM_MODES */
+
+#define COMBFILTER_MAXPERIOD 1024
+#define COMBFILTER_MINPERIOD 15
+
+extern const signed char tf_select_table[4][8];
+
+int resampling_factor(opus_int32 rate);
+
+void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N,
+      opus_val16 g0, opus_val16 g1, int tapset0, int tapset1,
+      const opus_val16 *window, int overlap);
+
+void init_caps(const CELTMode *m,int *cap,int LM,int C);
+
+#ifdef RESYNTH
+void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, const opus_val16 *coef, celt_sig *mem, celt_sig * OPUS_RESTRICT scratch);
+
+void compute_inv_mdcts(const CELTMode *mode, int shortBlocks, celt_sig *X,
+      celt_sig * OPUS_RESTRICT out_mem[], int C, int LM);
+#endif
+
 #ifdef __cplusplus
 }
 #endif
diff --git a/celt/celt_decoder.c b/celt/celt_decoder.c
new file mode 100644 (file)
index 0000000..4303f04
--- /dev/null
@@ -0,0 +1,1127 @@
+/* Copyright (c) 2007-2008 CSIRO
+   Copyright (c) 2007-2010 Xiph.Org Foundation
+   Copyright (c) 2008 Gregory Maxwell
+   Written by Jean-Marc Valin and Gregory Maxwell */
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#define CELT_C
+#define DECODER
+
+#include "os_support.h"
+#include "mdct.h"
+#include <math.h>
+#include "celt.h"
+#include "pitch.h"
+#include "bands.h"
+#include "modes.h"
+#include "entcode.h"
+#include "quant_bands.h"
+#include "rate.h"
+#include "stack_alloc.h"
+#include "mathops.h"
+#include "float_cast.h"
+#include <stdarg.h>
+#include "celt_lpc.h"
+#include "vq.h"
+
+/**********************************************************************/
+/*                                                                    */
+/*                             DECODER                                */
+/*                                                                    */
+/**********************************************************************/
+#define DECODE_BUFFER_SIZE 2048
+
+/** Decoder state
+ @brief Decoder state
+ */
+struct OpusCustomDecoder {
+   const OpusCustomMode *mode;
+   int overlap;
+   int channels;
+   int stream_channels;
+
+   int downsample;
+   int start, end;
+   int signalling;
+
+   /* Everything beyond this point gets cleared on a reset */
+#define DECODER_RESET_START rng
+
+   opus_uint32 rng;
+   int error;
+   int last_pitch_index;
+   int loss_count;
+   int postfilter_period;
+   int postfilter_period_old;
+   opus_val16 postfilter_gain;
+   opus_val16 postfilter_gain_old;
+   int postfilter_tapset;
+   int postfilter_tapset_old;
+
+   celt_sig preemph_memD[2];
+
+   celt_sig _decode_mem[1]; /* Size = channels*(DECODE_BUFFER_SIZE+mode->overlap) */
+   /* opus_val16 lpc[],  Size = channels*LPC_ORDER */
+   /* opus_val16 oldEBands[], Size = 2*mode->nbEBands */
+   /* opus_val16 oldLogE[], Size = 2*mode->nbEBands */
+   /* opus_val16 oldLogE2[], Size = 2*mode->nbEBands */
+   /* opus_val16 backgroundLogE[], Size = 2*mode->nbEBands */
+};
+
+int celt_decoder_get_size(int channels)
+{
+   const CELTMode *mode = opus_custom_mode_create(48000, 960, NULL);
+   return opus_custom_decoder_get_size(mode, channels);
+}
+
+OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_get_size(const CELTMode *mode, int channels)
+{
+   int size = sizeof(struct CELTDecoder)
+            + (channels*(DECODE_BUFFER_SIZE+mode->overlap)-1)*sizeof(celt_sig)
+            + channels*LPC_ORDER*sizeof(opus_val16)
+            + 4*2*mode->nbEBands*sizeof(opus_val16);
+   return size;
+}
+
+#ifdef CUSTOM_MODES
+CELTDecoder *opus_custom_decoder_create(const CELTMode *mode, int channels, int *error)
+{
+   int ret;
+   CELTDecoder *st = (CELTDecoder *)opus_alloc(opus_custom_decoder_get_size(mode, channels));
+   ret = opus_custom_decoder_init(st, mode, channels);
+   if (ret != OPUS_OK)
+   {
+      opus_custom_decoder_destroy(st);
+      st = NULL;
+   }
+   if (error)
+      *error = ret;
+   return st;
+}
+#endif /* CUSTOM_MODES */
+
+int celt_decoder_init(CELTDecoder *st, opus_int32 sampling_rate, int channels)
+{
+   int ret;
+   ret = opus_custom_decoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels);
+   if (ret != OPUS_OK)
+      return ret;
+   st->downsample = resampling_factor(sampling_rate);
+   if (st->downsample==0)
+      return OPUS_BAD_ARG;
+   else
+      return OPUS_OK;
+}
+
+OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_init(CELTDecoder *st, const CELTMode *mode, int channels)
+{
+   if (channels < 0 || channels > 2)
+      return OPUS_BAD_ARG;
+
+   if (st==NULL)
+      return OPUS_ALLOC_FAIL;
+
+   OPUS_CLEAR((char*)st, opus_custom_decoder_get_size(mode, channels));
+
+   st->mode = mode;
+   st->overlap = mode->overlap;
+   st->stream_channels = st->channels = channels;
+
+   st->downsample = 1;
+   st->start = 0;
+   st->end = st->mode->effEBands;
+   st->signalling = 1;
+
+   st->loss_count = 0;
+
+   opus_custom_decoder_ctl(st, OPUS_RESET_STATE);
+
+   return OPUS_OK;
+}
+
+#ifdef CUSTOM_MODES
+void opus_custom_decoder_destroy(CELTDecoder *st)
+{
+   opus_free(st);
+}
+#endif /* CUSTOM_MODES */
+
+static inline opus_val16 SIG2WORD16(celt_sig x)
+{
+#ifdef FIXED_POINT
+   x = PSHR32(x, SIG_SHIFT);
+   x = MAX32(x, -32768);
+   x = MIN32(x, 32767);
+   return EXTRACT16(x);
+#else
+   return (opus_val16)x;
+#endif
+}
+
+#ifndef RESYNTH
+static
+#endif
+void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, const opus_val16 *coef, celt_sig *mem, celt_sig * OPUS_RESTRICT scratch)
+{
+   int c;
+   int Nd;
+   opus_val16 coef0, coef1;
+
+   coef0 = coef[0];
+   coef1 = coef[1];
+   Nd = N/downsample;
+   c=0; do {
+      int j;
+      celt_sig * OPUS_RESTRICT x;
+      opus_val16  * OPUS_RESTRICT y;
+      celt_sig m = mem[c];
+      x =in[c];
+      y = pcm+c;
+      /* Shortcut for the standard (non-custom modes) case */
+      if (coef1 == 0)
+      {
+         for (j=0;j<N;j++)
+         {
+            celt_sig tmp = x[j] + m;
+            m = MULT16_32_Q15(coef0, tmp);
+            scratch[j] = tmp;
+         }
+      } else {
+         opus_val16 coef3 = coef[3];
+         for (j=0;j<N;j++)
+         {
+            celt_sig tmp = x[j] + m;
+            m = MULT16_32_Q15(coef0, tmp)
+              - MULT16_32_Q15(coef1, x[j]);
+            tmp = SHL32(MULT16_32_Q15(coef3, tmp), 2);
+            scratch[j] = tmp;
+         }
+      }
+      mem[c] = m;
+
+      /* Perform down-sampling */
+      for (j=0;j<Nd;j++)
+         y[j*C] = SCALEOUT(SIG2WORD16(scratch[j*downsample]));
+   } while (++c<C);
+}
+
+/** Compute the IMDCT and apply window for all sub-frames and
+    all channels in a frame */
+#ifndef RESYNTH
+static
+#endif
+void compute_inv_mdcts(const CELTMode *mode, int shortBlocks, celt_sig *X,
+      celt_sig * OPUS_RESTRICT out_mem[], int C, int LM)
+{
+   int b, c;
+   int B;
+   int N;
+   int shift;
+   const int overlap = OVERLAP(mode);
+
+   if (shortBlocks)
+   {
+      B = shortBlocks;
+      N = mode->shortMdctSize;
+      shift = mode->maxLM;
+   } else {
+      B = 1;
+      N = mode->shortMdctSize<<LM;
+      shift = mode->maxLM-LM;
+   }
+   c=0; do {
+      /* IMDCT on the interleaved the sub-frames, overlap-add is performed by the IMDCT */
+      for (b=0;b<B;b++)
+         clt_mdct_backward(&mode->mdct, &X[b+c*N*B], out_mem[c]+N*b, mode->window, overlap, shift, B);
+   } while (++c<C);
+}
+
+static void tf_decode(int start, int end, int isTransient, int *tf_res, int LM, ec_dec *dec)
+{
+   int i, curr, tf_select;
+   int tf_select_rsv;
+   int tf_changed;
+   int logp;
+   opus_uint32 budget;
+   opus_uint32 tell;
+
+   budget = dec->storage*8;
+   tell = ec_tell(dec);
+   logp = isTransient ? 2 : 4;
+   tf_select_rsv = LM>0 && tell+logp+1<=budget;
+   budget -= tf_select_rsv;
+   tf_changed = curr = 0;
+   for (i=start;i<end;i++)
+   {
+      if (tell+logp<=budget)
+      {
+         curr ^= ec_dec_bit_logp(dec, logp);
+         tell = ec_tell(dec);
+         tf_changed |= curr;
+      }
+      tf_res[i] = curr;
+      logp = isTransient ? 4 : 5;
+   }
+   tf_select = 0;
+   if (tf_select_rsv &&
+     tf_select_table[LM][4*isTransient+0+tf_changed] !=
+     tf_select_table[LM][4*isTransient+2+tf_changed])
+   {
+      tf_select = ec_dec_bit_logp(dec, 1);
+   }
+   for (i=start;i<end;i++)
+   {
+      tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]];
+   }
+}
+
+
+static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, opus_val16 * OPUS_RESTRICT pcm, int N, int LM)
+{
+   int c;
+   int pitch_index;
+   opus_val16 fade = Q15ONE;
+   int i, len;
+   const int C = st->channels;
+   int offset;
+   celt_sig *out_mem[2];
+   celt_sig *decode_mem[2];
+   opus_val16 *lpc;
+   opus_val32 *out_syn[2];
+   opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE;
+   const OpusCustomMode *mode;
+   int nbEBands;
+   int overlap;
+   const opus_int16 *eBands;
+   VARDECL(celt_sig, scratch);
+   SAVE_STACK;
+
+   mode = st->mode;
+   nbEBands = mode->nbEBands;
+   overlap = mode->overlap;
+   eBands = mode->eBands;
+
+   c=0; do {
+      decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+st->overlap);
+      out_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE-MAX_PERIOD;
+   } while (++c<C);
+   lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*C);
+   oldBandE = lpc+C*LPC_ORDER;
+   oldLogE = oldBandE + 2*nbEBands;
+   oldLogE2 = oldLogE + 2*nbEBands;
+   backgroundLogE = oldLogE2  + 2*nbEBands;
+
+   c=0; do {
+      out_syn[c] = out_mem[c]+MAX_PERIOD-N;
+   } while (++c<C);
+
+   len = N+overlap;
+
+   if (st->loss_count >= 5 || st->start!=0)
+   {
+      /* Noise-based PLC/CNG */
+      VARDECL(celt_sig, freq);
+      VARDECL(celt_norm, X);
+      VARDECL(celt_ener, bandE);
+      opus_uint32 seed;
+      int effEnd;
+
+      effEnd = st->end;
+      if (effEnd > mode->effEBands)
+         effEnd = mode->effEBands;
+
+      ALLOC(freq, C*N, celt_sig); /**< Interleaved signal MDCTs */
+      ALLOC(X, C*N, celt_norm);   /**< Interleaved normalised MDCTs */
+      ALLOC(bandE, nbEBands*C, celt_ener);
+
+      if (st->loss_count >= 5)
+         log2Amp(mode, st->start, st->end, bandE, backgroundLogE, C);
+      else {
+         /* Energy decay */
+         opus_val16 decay = st->loss_count==0 ? QCONST16(1.5f, DB_SHIFT) : QCONST16(.5f, DB_SHIFT);
+         c=0; do
+         {
+            for (i=st->start;i<st->end;i++)
+               oldBandE[c*nbEBands+i] -= decay;
+         } while (++c<C);
+         log2Amp(mode, st->start, st->end, bandE, oldBandE, C);
+      }
+      seed = st->rng;
+      for (c=0;c<C;c++)
+      {
+         for (i=st->start;i<mode->effEBands;i++)
+         {
+            int j;
+            int boffs;
+            int blen;
+            boffs = N*c+(eBands[i]<<LM);
+            blen = (eBands[i+1]-eBands[i])<<LM;
+            for (j=0;j<blen;j++)
+            {
+               seed = celt_lcg_rand(seed);
+               X[boffs+j] = (celt_norm)((opus_int32)seed>>20);
+            }
+            renormalise_vector(X+boffs, blen, Q15ONE);
+         }
+      }
+      st->rng = seed;
+
+      denormalise_bands(mode, X, freq, bandE, st->start, mode->effEBands, C, 1<<LM);
+
+      c=0; do
+         for (i=0;i<eBands[st->start]<<LM;i++)
+            freq[c*N+i] = 0;
+      while (++c<C);
+      c=0; do {
+         int bound = eBands[effEnd]<<LM;
+         if (st->downsample!=1)
+            bound = IMIN(bound, N/st->downsample);
+         for (i=bound;i<N;i++)
+            freq[c*N+i] = 0;
+      } while (++c<C);
+      c=0; do {
+         OPUS_MOVE(decode_mem[c], decode_mem[c]+N, DECODE_BUFFER_SIZE-N+overlap);
+      } while (++c<C);
+      compute_inv_mdcts(mode, 0, freq, out_syn, C, LM);
+   } else {
+      /* Pitch-based PLC */
+      VARDECL(opus_val32, e);
+
+      if (st->loss_count == 0)
+      {
+         opus_val16 pitch_buf[DECODE_BUFFER_SIZE>>1];
+         /* Corresponds to a min pitch of 67 Hz. It's possible to save CPU in this
+         search by using only part of the decode buffer */
+         int poffset = 720;
+         pitch_downsample(decode_mem, pitch_buf, DECODE_BUFFER_SIZE, C);
+         /* Max pitch is 100 samples (480 Hz) */
+         pitch_search(pitch_buf+((poffset)>>1), pitch_buf, DECODE_BUFFER_SIZE-poffset,
+               poffset-100, &pitch_index);
+         pitch_index = poffset-pitch_index;
+         st->last_pitch_index = pitch_index;
+      } else {
+         pitch_index = st->last_pitch_index;
+         fade = QCONST16(.8f,15);
+      }
+
+      ALLOC(e, MAX_PERIOD+2*overlap, opus_val32);
+      c=0; do {
+         opus_val16 exc[MAX_PERIOD];
+         opus_val32 ac[LPC_ORDER+1];
+         opus_val16 decay = 1;
+         opus_val32 S1=0;
+         opus_val16 mem[LPC_ORDER]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+
+         offset = MAX_PERIOD-pitch_index;
+         for (i=0;i<MAX_PERIOD;i++)
+            exc[i] = ROUND16(out_mem[c][i], SIG_SHIFT);
+
+         if (st->loss_count == 0)
+         {
+            _celt_autocorr(exc, ac, mode->window, overlap,
+                  LPC_ORDER, MAX_PERIOD);
+
+            /* Noise floor -40 dB */
+#ifdef FIXED_POINT
+            ac[0] += SHR32(ac[0],13);
+#else
+            ac[0] *= 1.0001f;
+#endif
+            /* Lag windowing */
+            for (i=1;i<=LPC_ORDER;i++)
+            {
+               /*ac[i] *= exp(-.5*(2*M_PI*.002*i)*(2*M_PI*.002*i));*/
+#ifdef FIXED_POINT
+               ac[i] -= MULT16_32_Q15(2*i*i, ac[i]);
+#else
+               ac[i] -= ac[i]*(.008f*i)*(.008f*i);
+#endif
+            }
+
+            _celt_lpc(lpc+c*LPC_ORDER, ac, LPC_ORDER);
+         }
+         for (i=0;i<LPC_ORDER;i++)
+            mem[i] = ROUND16(out_mem[c][MAX_PERIOD-1-i], SIG_SHIFT);
+         celt_fir(exc, lpc+c*LPC_ORDER, exc, MAX_PERIOD, LPC_ORDER, mem);
+         /*for (i=0;i<MAX_PERIOD;i++)printf("%d ", exc[i]); printf("\n");*/
+         /* Check if the waveform is decaying (and if so how fast) */
+         {
+            opus_val32 E1=1, E2=1;
+            int period;
+            if (pitch_index <= MAX_PERIOD/2)
+               period = pitch_index;
+            else
+               period = MAX_PERIOD/2;
+            for (i=0;i<period;i++)
+            {
+               E1 += SHR32(MULT16_16(exc[MAX_PERIOD-period+i],exc[MAX_PERIOD-period+i]),8);
+               E2 += SHR32(MULT16_16(exc[MAX_PERIOD-2*period+i],exc[MAX_PERIOD-2*period+i]),8);
+            }
+            if (E1 > E2)
+               E1 = E2;
+            decay = celt_sqrt(frac_div32(SHR32(E1,1),E2));
+         }
+
+         /* Copy excitation, taking decay into account */
+         for (i=0;i<len+overlap;i++)
+         {
+            opus_val16 tmp;
+            if (offset+i >= MAX_PERIOD)
+            {
+               offset -= pitch_index;
+               decay = MULT16_16_Q15(decay, decay);
+            }
+            e[i] = SHL32(EXTEND32(MULT16_16_Q15(decay, exc[offset+i])), SIG_SHIFT);
+            tmp = ROUND16(out_mem[c][offset+i],SIG_SHIFT);
+            S1 += SHR32(MULT16_16(tmp,tmp),8);
+         }
+         for (i=0;i<LPC_ORDER;i++)
+            mem[i] = ROUND16(out_mem[c][MAX_PERIOD-1-i], SIG_SHIFT);
+         for (i=0;i<len+overlap;i++)
+            e[i] = MULT16_32_Q15(fade, e[i]);
+         celt_iir(e, lpc+c*LPC_ORDER, e, len+overlap, LPC_ORDER, mem);
+
+         {
+            opus_val32 S2=0;
+            for (i=0;i<len+overlap;i++)
+            {
+               opus_val16 tmp = ROUND16(e[i],SIG_SHIFT);
+               S2 += SHR32(MULT16_16(tmp,tmp),8);
+            }
+            /* This checks for an "explosion" in the synthesis */
+#ifdef FIXED_POINT
+            if (!(S1 > SHR32(S2,2)))
+#else
+               /* Float test is written this way to catch NaNs at the same time */
+               if (!(S1 > 0.2f*S2))
+#endif
+               {
+                  for (i=0;i<len+overlap;i++)
+                     e[i] = 0;
+               } else if (S1 < S2)
+               {
+                  opus_val16 ratio = celt_sqrt(frac_div32(SHR32(S1,1)+1,S2+1));
+                  for (i=0;i<len+overlap;i++)
+                     e[i] = MULT16_32_Q15(ratio, e[i]);
+               }
+         }
+
+         /* Apply post-filter to the MDCT overlap of the previous frame */
+         comb_filter(out_mem[c]+MAX_PERIOD, out_mem[c]+MAX_PERIOD, st->postfilter_period, st->postfilter_period, st->overlap,
+               st->postfilter_gain, st->postfilter_gain, st->postfilter_tapset, st->postfilter_tapset,
+               NULL, 0);
+
+         for (i=0;i<MAX_PERIOD+overlap-N;i++)
+            out_mem[c][i] = out_mem[c][N+i];
+
+         /* Apply TDAC to the concealed audio so that it blends with the
+         previous and next frames */
+         for (i=0;i<overlap/2;i++)
+         {
+            opus_val32 tmp;
+            tmp = MULT16_32_Q15(mode->window[i],           e[N+overlap-1-i]) +
+                  MULT16_32_Q15(mode->window[overlap-i-1], e[N+i          ]);
+            out_mem[c][MAX_PERIOD+i] = MULT16_32_Q15(mode->window[overlap-i-1], tmp);
+            out_mem[c][MAX_PERIOD+overlap-i-1] = MULT16_32_Q15(mode->window[i], tmp);
+         }
+         for (i=0;i<N;i++)
+            out_mem[c][MAX_PERIOD-N+i] = e[i];
+
+         /* Apply pre-filter to the MDCT overlap for the next frame (post-filter will be applied then) */
+         comb_filter(e, out_mem[c]+MAX_PERIOD, st->postfilter_period, st->postfilter_period, st->overlap,
+               -st->postfilter_gain, -st->postfilter_gain, st->postfilter_tapset, st->postfilter_tapset,
+               NULL, 0);
+         for (i=0;i<overlap;i++)
+            out_mem[c][MAX_PERIOD+i] = e[i];
+      } while (++c<C);
+   }
+
+   ALLOC(scratch, N, celt_sig);
+   deemphasis(out_syn, pcm, N, C, st->downsample, mode->preemph, st->preemph_memD, scratch);
+
+   st->loss_count++;
+
+   RESTORE_STACK;
+}
+
+int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_val16 * OPUS_RESTRICT pcm, int frame_size, ec_dec *dec)
+{
+   int c, i, N;
+   int spread_decision;
+   opus_int32 bits;
+   ec_dec _dec;
+   VARDECL(celt_sig, freq);
+   VARDECL(celt_norm, X);
+   VARDECL(celt_ener, bandE);
+   VARDECL(int, fine_quant);
+   VARDECL(int, pulses);
+   VARDECL(int, cap);
+   VARDECL(int, offsets);
+   VARDECL(int, fine_priority);
+   VARDECL(int, tf_res);
+   VARDECL(unsigned char, collapse_masks);
+   celt_sig *out_mem[2];
+   celt_sig *decode_mem[2];
+   celt_sig *out_syn[2];
+   opus_val16 *lpc;
+   opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE;
+
+   int shortBlocks;
+   int isTransient;
+   int intra_ener;
+   const int CC = st->channels;
+   int LM, M;
+   int effEnd;
+   int codedBands;
+   int alloc_trim;
+   int postfilter_pitch;
+   opus_val16 postfilter_gain;
+   int intensity=0;
+   int dual_stereo=0;
+   opus_int32 total_bits;
+   opus_int32 balance;
+   opus_int32 tell;
+   int dynalloc_logp;
+   int postfilter_tapset;
+   int anti_collapse_rsv;
+   int anti_collapse_on=0;
+   int silence;
+   int C = st->stream_channels;
+   const OpusCustomMode *mode;
+   int nbEBands;
+   int overlap;
+   const opus_int16 *eBands;
+   ALLOC_STACK;
+
+   mode = st->mode;
+   nbEBands = mode->nbEBands;
+   overlap = mode->overlap;
+   eBands = mode->eBands;
+   frame_size *= st->downsample;
+
+   c=0; do {
+      decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+overlap);
+      out_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE-MAX_PERIOD;
+   } while (++c<CC);
+   lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+overlap)*CC);
+   oldBandE = lpc+CC*LPC_ORDER;
+   oldLogE = oldBandE + 2*nbEBands;
+   oldLogE2 = oldLogE + 2*nbEBands;
+   backgroundLogE = oldLogE2  + 2*nbEBands;
+
+#ifdef CUSTOM_MODES
+   if (st->signalling && data!=NULL)
+   {
+      int data0=data[0];
+      /* Convert "standard mode" to Opus header */
+      if (mode->Fs==48000 && mode->shortMdctSize==120)
+      {
+         data0 = fromOpus(data0);
+         if (data0<0)
+            return OPUS_INVALID_PACKET;
+      }
+      st->end = IMAX(1, mode->effEBands-2*(data0>>5));
+      LM = (data0>>3)&0x3;
+      C = 1 + ((data0>>2)&0x1);
+      data++;
+      len--;
+      if (LM>mode->maxLM)
+         return OPUS_INVALID_PACKET;
+      if (frame_size < mode->shortMdctSize<<LM)
+         return OPUS_BUFFER_TOO_SMALL;
+      else
+         frame_size = mode->shortMdctSize<<LM;
+   } else {
+#else
+   {
+#endif
+      for (LM=0;LM<=mode->maxLM;LM++)
+         if (mode->shortMdctSize<<LM==frame_size)
+            break;
+      if (LM>mode->maxLM)
+         return OPUS_BAD_ARG;
+   }
+   M=1<<LM;
+
+   if (len<0 || len>1275 || pcm==NULL)
+      return OPUS_BAD_ARG;
+
+   N = M*mode->shortMdctSize;
+
+   effEnd = st->end;
+   if (effEnd > mode->effEBands)
+      effEnd = mode->effEBands;
+
+   if (data == NULL || len<=1)
+   {
+      celt_decode_lost(st, pcm, N, LM);
+      RESTORE_STACK;
+      return frame_size/st->downsample;
+   }
+
+   if (dec == NULL)
+   {
+      ec_dec_init(&_dec,(unsigned char*)data,len);
+      dec = &_dec;
+   }
+
+   if (C==1)
+   {
+      for (i=0;i<nbEBands;i++)
+         oldBandE[i]=MAX16(oldBandE[i],oldBandE[nbEBands+i]);
+   }
+
+   total_bits = len*8;
+   tell = ec_tell(dec);
+
+   if (tell >= total_bits)
+      silence = 1;
+   else if (tell==1)
+      silence = ec_dec_bit_logp(dec, 15);
+   else
+      silence = 0;
+   if (silence)
+   {
+      /* Pretend we've read all the remaining bits */
+      tell = len*8;
+      dec->nbits_total+=tell-ec_tell(dec);
+   }
+
+   postfilter_gain = 0;
+   postfilter_pitch = 0;
+   postfilter_tapset = 0;
+   if (st->start==0 && tell+16 <= total_bits)
+   {
+      if(ec_dec_bit_logp(dec, 1))
+      {
+         int qg, octave;
+         octave = ec_dec_uint(dec, 6);
+         postfilter_pitch = (16<<octave)+ec_dec_bits(dec, 4+octave)-1;
+         qg = ec_dec_bits(dec, 3);
+         if (ec_tell(dec)+2<=total_bits)
+            postfilter_tapset = ec_dec_icdf(dec, tapset_icdf, 2);
+         postfilter_gain = QCONST16(.09375f,15)*(qg+1);
+      }
+      tell = ec_tell(dec);
+   }
+
+   if (LM > 0 && tell+3 <= total_bits)
+   {
+      isTransient = ec_dec_bit_logp(dec, 3);
+      tell = ec_tell(dec);
+   }
+   else
+      isTransient = 0;
+
+   if (isTransient)
+      shortBlocks = M;
+   else
+      shortBlocks = 0;
+
+   /* Decode the global flags (first symbols in the stream) */
+   intra_ener = tell+3<=total_bits ? ec_dec_bit_logp(dec, 3) : 0;
+   /* Get band energies */
+   unquant_coarse_energy(mode, st->start, st->end, oldBandE,
+         intra_ener, dec, C, LM);
+
+   ALLOC(tf_res, nbEBands, int);
+   tf_decode(st->start, st->end, isTransient, tf_res, LM, dec);
+
+   tell = ec_tell(dec);
+   spread_decision = SPREAD_NORMAL;
+   if (tell+4 <= total_bits)
+      spread_decision = ec_dec_icdf(dec, spread_icdf, 5);
+
+   ALLOC(cap, nbEBands, int);
+
+   init_caps(mode,cap,LM,C);
+
+   ALLOC(offsets, nbEBands, int);
+
+   dynalloc_logp = 6;
+   total_bits<<=BITRES;
+   tell = ec_tell_frac(dec);
+   for (i=st->start;i<st->end;i++)
+   {
+      int width, quanta;
+      int dynalloc_loop_logp;
+      int boost;
+      width = C*(eBands[i+1]-eBands[i])<<LM;
+      /* quanta is 6 bits, but no more than 1 bit/sample
+         and no less than 1/8 bit/sample */
+      quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width));
+      dynalloc_loop_logp = dynalloc_logp;
+      boost = 0;
+      while (tell+(dynalloc_loop_logp<<BITRES) < total_bits && boost < cap[i])
+      {
+         int flag;
+         flag = ec_dec_bit_logp(dec, dynalloc_loop_logp);
+         tell = ec_tell_frac(dec);
+         if (!flag)
+            break;
+         boost += quanta;
+         total_bits -= quanta;
+         dynalloc_loop_logp = 1;
+      }
+      offsets[i] = boost;
+      /* Making dynalloc more likely */
+      if (boost>0)
+         dynalloc_logp = IMAX(2, dynalloc_logp-1);
+   }
+
+   ALLOC(fine_quant, nbEBands, int);
+   alloc_trim = tell+(6<<BITRES) <= total_bits ?
+         ec_dec_icdf(dec, trim_icdf, 7) : 5;
+
+   bits = (((opus_int32)len*8)<<BITRES) - ec_tell_frac(dec) - 1;
+   anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0;
+   bits -= anti_collapse_rsv;
+
+   ALLOC(pulses, nbEBands, int);
+   ALLOC(fine_priority, nbEBands, int);
+
+   codedBands = compute_allocation(mode, st->start, st->end, offsets, cap,
+         alloc_trim, &intensity, &dual_stereo, bits, &balance, pulses,
+         fine_quant, fine_priority, C, LM, dec, 0, 0);
+
+   unquant_fine_energy(mode, st->start, st->end, oldBandE, fine_quant, dec, C);
+
+   /* Decode fixed codebook */
+   ALLOC(collapse_masks, C*nbEBands, unsigned char);
+   ALLOC(X, C*N, celt_norm);   /**< Interleaved normalised MDCTs */
+
+   quant_all_bands(0, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks,
+         NULL, pulses, shortBlocks, spread_decision, dual_stereo, intensity, tf_res,
+         len*(8<<BITRES)-anti_collapse_rsv, balance, dec, LM, codedBands, &st->rng);
+
+   if (anti_collapse_rsv > 0)
+   {
+      anti_collapse_on = ec_dec_bits(dec, 1);
+   }
+
+   unquant_energy_finalise(mode, st->start, st->end, oldBandE,
+         fine_quant, fine_priority, len*8-ec_tell(dec), dec, C);
+
+   if (anti_collapse_on)
+      anti_collapse(mode, X, collapse_masks, LM, C, N,
+            st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng);
+
+   ALLOC(bandE, nbEBands*C, celt_ener);
+
+   log2Amp(mode, st->start, st->end, bandE, oldBandE, C);
+
+   if (silence)
+   {
+      for (i=0;i<C*nbEBands;i++)
+      {
+         bandE[i] = 0;
+         oldBandE[i] = -QCONST16(28.f,DB_SHIFT);
+      }
+   }
+   ALLOC(freq, IMAX(CC,C)*N, celt_sig); /**< Interleaved signal MDCTs */
+   /* Synthesis */
+   denormalise_bands(mode, X, freq, bandE, st->start, effEnd, C, M);
+
+   c=0; do {
+      OPUS_MOVE(decode_mem[c], decode_mem[c]+N, DECODE_BUFFER_SIZE-N+overlap);
+   } while (++c<CC);
+
+   c=0; do
+      for (i=0;i<M*eBands[st->start];i++)
+         freq[c*N+i] = 0;
+   while (++c<C);
+   c=0; do {
+      int bound = M*eBands[effEnd];
+      if (st->downsample!=1)
+         bound = IMIN(bound, N/st->downsample);
+      for (i=bound;i<N;i++)
+         freq[c*N+i] = 0;
+   } while (++c<C);
+
+   c=0; do {
+      out_syn[c] = out_mem[c]+MAX_PERIOD-N;
+   } while (++c<CC);
+
+   if (CC==2&&C==1)
+   {
+      for (i=0;i<N;i++)
+         freq[N+i] = freq[i];
+   }
+   if (CC==1&&C==2)
+   {
+      for (i=0;i<N;i++)
+         freq[i] = HALF32(ADD32(freq[i],freq[N+i]));
+   }
+
+   /* Compute inverse MDCTs */
+   compute_inv_mdcts(mode, shortBlocks, freq, out_syn, CC, LM);
+
+   c=0; do {
+      st->postfilter_period=IMAX(st->postfilter_period, COMBFILTER_MINPERIOD);
+      st->postfilter_period_old=IMAX(st->postfilter_period_old, COMBFILTER_MINPERIOD);
+      comb_filter(out_syn[c], out_syn[c], st->postfilter_period_old, st->postfilter_period, mode->shortMdctSize,
+            st->postfilter_gain_old, st->postfilter_gain, st->postfilter_tapset_old, st->postfilter_tapset,
+            mode->window, overlap);
+      if (LM!=0)
+         comb_filter(out_syn[c]+mode->shortMdctSize, out_syn[c]+mode->shortMdctSize, st->postfilter_period, postfilter_pitch, N-mode->shortMdctSize,
+               st->postfilter_gain, postfilter_gain, st->postfilter_tapset, postfilter_tapset,
+               mode->window, overlap);
+
+   } while (++c<CC);
+   st->postfilter_period_old = st->postfilter_period;
+   st->postfilter_gain_old = st->postfilter_gain;
+   st->postfilter_tapset_old = st->postfilter_tapset;
+   st->postfilter_period = postfilter_pitch;
+   st->postfilter_gain = postfilter_gain;
+   st->postfilter_tapset = postfilter_tapset;
+   if (LM!=0)
+   {
+      st->postfilter_period_old = st->postfilter_period;
+      st->postfilter_gain_old = st->postfilter_gain;
+      st->postfilter_tapset_old = st->postfilter_tapset;
+   }
+
+   if (C==1) {
+      for (i=0;i<nbEBands;i++)
+         oldBandE[nbEBands+i]=oldBandE[i];
+   }
+
+   /* In case start or end were to change */
+   if (!isTransient)
+   {
+      for (i=0;i<2*nbEBands;i++)
+         oldLogE2[i] = oldLogE[i];
+      for (i=0;i<2*nbEBands;i++)
+         oldLogE[i] = oldBandE[i];
+      for (i=0;i<2*nbEBands;i++)
+         backgroundLogE[i] = MIN16(backgroundLogE[i] + M*QCONST16(0.001f,DB_SHIFT), oldBandE[i]);
+   } else {
+      for (i=0;i<2*nbEBands;i++)
+         oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]);
+   }
+   c=0; do
+   {
+      for (i=0;i<st->start;i++)
+      {
+         oldBandE[c*nbEBands+i]=0;
+         oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
+      }
+      for (i=st->end;i<nbEBands;i++)
+      {
+         oldBandE[c*nbEBands+i]=0;
+         oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
+      }
+   } while (++c<2);
+   st->rng = dec->rng;
+
+   /* We reuse freq[] as scratch space for the de-emphasis */
+   deemphasis(out_syn, pcm, N, CC, st->downsample, mode->preemph, st->preemph_memD, freq);
+   st->loss_count = 0;
+   RESTORE_STACK;
+   if (ec_tell(dec) > 8*len)
+      return OPUS_INTERNAL_ERROR;
+   if(ec_get_error(dec))
+      st->error = 1;
+   return frame_size/st->downsample;
+}
+
+
+#ifdef CUSTOM_MODES
+
+#ifdef FIXED_POINT
+int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size)
+{
+   return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL);
+}
+
+#ifndef DISABLE_FLOAT_API
+int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size)
+{
+   int j, ret, C, N;
+   VARDECL(opus_int16, out);
+   ALLOC_STACK;
+
+   if (pcm==NULL)
+      return OPUS_BAD_ARG;
+
+   C = st->channels;
+   N = frame_size;
+
+   ALLOC(out, C*N, opus_int16);
+   ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL);
+   if (ret>0)
+      for (j=0;j<C*ret;j++)
+         pcm[j]=out[j]*(1.f/32768.f);
+
+   RESTORE_STACK;
+   return ret;
+}
+#endif /* DISABLE_FLOAT_API */
+
+#else
+
+int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size)
+{
+   return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL);
+}
+
+int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size)
+{
+   int j, ret, C, N;
+   VARDECL(celt_sig, out);
+   ALLOC_STACK;
+
+   if (pcm==NULL)
+      return OPUS_BAD_ARG;
+
+   C = st->channels;
+   N = frame_size;
+   ALLOC(out, C*N, celt_sig);
+
+   ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL);
+
+   if (ret>0)
+      for (j=0;j<C*ret;j++)
+         pcm[j] = FLOAT2INT16 (out[j]);
+
+   RESTORE_STACK;
+   return ret;
+}
+
+#endif
+#endif /* CUSTOM_MODES */
+
+int opus_custom_decoder_ctl(CELTDecoder * OPUS_RESTRICT st, int request, ...)
+{
+   va_list ap;
+
+   va_start(ap, request);
+   switch (request)
+   {
+      case CELT_SET_START_BAND_REQUEST:
+      {
+         opus_int32 value = va_arg(ap, opus_int32);
+         if (value<0 || value>=st->mode->nbEBands)
+            goto bad_arg;
+         st->start = value;
+      }
+      break;
+      case CELT_SET_END_BAND_REQUEST:
+      {
+         opus_int32 value = va_arg(ap, opus_int32);
+         if (value<1 || value>st->mode->nbEBands)
+            goto bad_arg;
+         st->end = value;
+      }
+      break;
+      case CELT_SET_CHANNELS_REQUEST:
+      {
+         opus_int32 value = va_arg(ap, opus_int32);
+         if (value<1 || value>2)
+            goto bad_arg;
+         st->stream_channels = value;
+      }
+      break;
+      case CELT_GET_AND_CLEAR_ERROR_REQUEST:
+      {
+         opus_int32 *value = va_arg(ap, opus_int32*);
+         if (value==NULL)
+            goto bad_arg;
+         *value=st->error;
+         st->error = 0;
+      }
+      break;
+      case OPUS_GET_LOOKAHEAD_REQUEST:
+      {
+         opus_int32 *value = va_arg(ap, opus_int32*);
+         if (value==NULL)
+            goto bad_arg;
+         *value = st->overlap/st->downsample;
+      }
+      break;
+      case OPUS_RESET_STATE:
+      {
+         int i;
+         opus_val16 *lpc, *oldBandE, *oldLogE, *oldLogE2;
+         lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*st->channels);
+         oldBandE = lpc+st->channels*LPC_ORDER;
+         oldLogE = oldBandE + 2*st->mode->nbEBands;
+         oldLogE2 = oldLogE + 2*st->mode->nbEBands;
+         OPUS_CLEAR((char*)&st->DECODER_RESET_START,
+               opus_custom_decoder_get_size(st->mode, st->channels)-
+               ((char*)&st->DECODER_RESET_START - (char*)st));
+         for (i=0;i<2*st->mode->nbEBands;i++)
+            oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT);
+      }
+      break;
+      case OPUS_GET_PITCH_REQUEST:
+      {
+         opus_int32 *value = va_arg(ap, opus_int32*);
+         if (value==NULL)
+            goto bad_arg;
+         *value = st->postfilter_period;
+      }
+      break;
+#ifdef OPUS_BUILD
+      case CELT_GET_MODE_REQUEST:
+      {
+         const CELTMode ** value = va_arg(ap, const CELTMode**);
+         if (value==0)
+            goto bad_arg;
+         *value=st->mode;
+      }
+      break;
+      case CELT_SET_SIGNALLING_REQUEST:
+      {
+         opus_int32 value = va_arg(ap, opus_int32);
+         st->signalling = value;
+      }
+      break;
+      case OPUS_GET_FINAL_RANGE_REQUEST:
+      {
+         opus_uint32 * value = va_arg(ap, opus_uint32 *);
+         if (value==0)
+            goto bad_arg;
+         *value=st->rng;
+      }
+      break;
+#endif
+      default:
+         goto bad_request;
+   }
+   va_end(ap);
+   return OPUS_OK;
+bad_arg:
+   va_end(ap);
+   return OPUS_BAD_ARG;
+bad_request:
+      va_end(ap);
+  return OPUS_UNIMPLEMENTED;
+}
diff --git a/celt/celt_encoder.c b/celt/celt_encoder.c
new file mode 100644 (file)
index 0000000..b2d5df1
--- /dev/null
@@ -0,0 +1,2033 @@
+/* Copyright (c) 2007-2008 CSIRO
+   Copyright (c) 2007-2010 Xiph.Org Foundation
+   Copyright (c) 2008 Gregory Maxwell
+   Written by Jean-Marc Valin and Gregory Maxwell */
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#define CELT_C
+#define ENCODER
+
+#include "os_support.h"
+#include "mdct.h"
+#include <math.h>
+#include "celt.h"
+#include "pitch.h"
+#include "bands.h"
+#include "modes.h"
+#include "entcode.h"
+#include "quant_bands.h"
+#include "rate.h"
+#include "stack_alloc.h"
+#include "mathops.h"
+#include "float_cast.h"
+#include <stdarg.h>
+#include "celt_lpc.h"
+#include "vq.h"
+
+
+/** Encoder state
+ @brief Encoder state
+ */
+struct OpusCustomEncoder {
+   const OpusCustomMode *mode;     /**< Mode used by the encoder */
+   int overlap;
+   int channels;
+   int stream_channels;
+
+   int force_intra;
+   int clip;
+   int disable_pf;
+   int complexity;
+   int upsample;
+   int start, end;
+
+   opus_int32 bitrate;
+   int vbr;
+   int signalling;
+   int constrained_vbr;      /* If zero, VBR can do whatever it likes with the rate */
+   int loss_rate;
+   int lsb_depth;
+
+   /* Everything beyond this point gets cleared on a reset */
+#define ENCODER_RESET_START rng
+
+   opus_uint32 rng;
+   int spread_decision;
+   opus_val32 delayedIntra;
+   int tonal_average;
+   int lastCodedBands;
+   int hf_average;
+   int tapset_decision;
+
+   int prefilter_period;
+   opus_val16 prefilter_gain;
+   int prefilter_tapset;
+#ifdef RESYNTH
+   int prefilter_period_old;
+   opus_val16 prefilter_gain_old;
+   int prefilter_tapset_old;
+#endif
+   int consec_transient;
+   AnalysisInfo analysis;
+
+   opus_val32 preemph_memE[2];
+   opus_val32 preemph_memD[2];
+
+   /* VBR-related parameters */
+   opus_int32 vbr_reservoir;
+   opus_int32 vbr_drift;
+   opus_int32 vbr_offset;
+   opus_int32 vbr_count;
+   opus_val16 overlap_max;
+   opus_val16 stereo_saving;
+   int intensity;
+
+#ifdef RESYNTH
+   /* +MAX_PERIOD/2 to make space for overlap */
+   celt_sig syn_mem[2][2*MAX_PERIOD+MAX_PERIOD/2];
+#endif
+
+   celt_sig in_mem[1]; /* Size = channels*mode->overlap */
+   /* celt_sig prefilter_mem[],  Size = channels*COMBFILTER_MAXPERIOD */
+   /* opus_val16 oldBandE[],     Size = channels*mode->nbEBands */
+   /* opus_val16 oldLogE[],      Size = channels*mode->nbEBands */
+   /* opus_val16 oldLogE2[],     Size = channels*mode->nbEBands */
+};
+
+int celt_encoder_get_size(int channels)
+{
+   CELTMode *mode = opus_custom_mode_create(48000, 960, NULL);
+   return opus_custom_encoder_get_size(mode, channels);
+}
+
+OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_get_size(const CELTMode *mode, int channels)
+{
+   int size = sizeof(struct CELTEncoder)
+         + (channels*mode->overlap-1)*sizeof(celt_sig)    /* celt_sig in_mem[channels*mode->overlap]; */
+         + channels*COMBFILTER_MAXPERIOD*sizeof(celt_sig) /* celt_sig prefilter_mem[channels*COMBFILTER_MAXPERIOD]; */
+         + 3*channels*mode->nbEBands*sizeof(opus_val16);  /* opus_val16 oldBandE[channels*mode->nbEBands]; */
+                                                          /* opus_val16 oldLogE[channels*mode->nbEBands]; */
+                                                          /* opus_val16 oldLogE2[channels*mode->nbEBands]; */
+   return size;
+}
+
+#ifdef CUSTOM_MODES
+CELTEncoder *opus_custom_encoder_create(const CELTMode *mode, int channels, int *error)
+{
+   int ret;
+   CELTEncoder *st = (CELTEncoder *)opus_alloc(opus_custom_encoder_get_size(mode, channels));
+   /* init will handle the NULL case */
+   ret = opus_custom_encoder_init(st, mode, channels);
+   if (ret != OPUS_OK)
+   {
+      opus_custom_encoder_destroy(st);
+      st = NULL;
+   }
+   if (error)
+      *error = ret;
+   return st;
+}
+#endif /* CUSTOM_MODES */
+
+int celt_encoder_init(CELTEncoder *st, opus_int32 sampling_rate, int channels)
+{
+   int ret;
+   ret = opus_custom_encoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels);
+   if (ret != OPUS_OK)
+      return ret;
+   st->upsample = resampling_factor(sampling_rate);
+   return OPUS_OK;
+}
+
+OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_init(CELTEncoder *st, const CELTMode *mode, int channels)
+{
+   if (channels < 0 || channels > 2)
+      return OPUS_BAD_ARG;
+
+   if (st==NULL || mode==NULL)
+      return OPUS_ALLOC_FAIL;
+
+   OPUS_CLEAR((char*)st, opus_custom_encoder_get_size(mode, channels));
+
+   st->mode = mode;
+   st->overlap = mode->overlap;
+   st->stream_channels = st->channels = channels;
+
+   st->upsample = 1;
+   st->start = 0;
+   st->end = st->mode->effEBands;
+   st->signalling = 1;
+
+   st->constrained_vbr = 1;
+   st->clip = 1;
+
+   st->bitrate = OPUS_BITRATE_MAX;
+   st->vbr = 0;
+   st->force_intra  = 0;
+   st->complexity = 5;
+   st->lsb_depth=24;
+
+   opus_custom_encoder_ctl(st, OPUS_RESET_STATE);
+
+   return OPUS_OK;
+}
+
+#ifdef CUSTOM_MODES
+void opus_custom_encoder_destroy(CELTEncoder *st)
+{
+   opus_free(st);
+}
+#endif /* CUSTOM_MODES */
+
+
+static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int C,
+                              opus_val16 *tf_estimate, int *tf_chan)
+{
+   int i;
+   VARDECL(opus_val16, tmp);
+   opus_val32 mem0,mem1;
+   int is_transient = 0;
+   opus_int32 mask_metric = 0;
+   int c;
+   int tf_max;
+   /* Table of 6*64/x, trained on real data to minimize the average error */
+   static const unsigned char inv_table[128] = {
+         255,255,156,110, 86, 70, 59, 51, 45, 40, 37, 33, 31, 28, 26, 25,
+          23, 22, 21, 20, 19, 18, 17, 16, 16, 15, 15, 14, 13, 13, 12, 12,
+          12, 12, 11, 11, 11, 10, 10, 10,  9,  9,  9,  9,  9,  9,  8,  8,
+           8,  8,  8,  7,  7,  7,  7,  7,  7,  6,  6,  6,  6,  6,  6,  6,
+           6,  6,  6,  6,  6,  6,  6,  6,  6,  5,  5,  5,  5,  5,  5,  5,
+           5,  5,  5,  5,  5,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,
+           4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  4,  3,  3,
+           3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  3,  2,
+   };
+   SAVE_STACK;
+   ALLOC(tmp, len, opus_val16);
+
+   tf_max = 0;
+   for (c=0;c<C;c++)
+   {
+      opus_val32 mean;
+      opus_int32 unmask=0;
+      opus_val32 norm;
+      mem0=0;
+      mem1=0;
+      /* High-pass filter: (1 - 2*z^-1 + z^-2) / (1 - z^-1 + .5*z^-2) */
+      for (i=0;i<len;i++)
+      {
+         opus_val32 x,y;
+         x = SHR32(in[i+c*len],SIG_SHIFT);
+         y = ADD32(mem0, x);
+#ifdef FIXED_POINT
+         mem0 = mem1 + y - SHL32(x,1);
+         mem1 = x - SHR32(y,1);
+#else
+         mem0 = mem1 + y - 2*x;
+         mem1 = x - .5f*y;
+#endif
+         tmp[i] = EXTRACT16(SHR32(y,2));
+         /*printf("%f ", tmp[i]);*/
+      }
+      /*printf("\n");*/
+      /* First few samples are bad because we don't propagate the memory */
+      for (i=0;i<12;i++)
+         tmp[i] = 0;
+
+#ifdef FIXED_POINT
+      /* Normalize tmp to max range */
+      {
+         int shift=0;
+         shift = 14-celt_ilog2(1+celt_maxabs16(tmp, len));
+         if (shift!=0)
+         {
+            for (i=0;i<len;i++)
+               tmp[i] = SHL16(tmp[i], shift);
+         }
+      }
+#endif
+
+      mean=0;
+      mem0=0;
+      /*  Grouping by two to reduce complexity */
+      len/=2;
+      /* Forward pass to compute the post-echo threshold*/
+      for (i=0;i<len;i++)
+      {
+         opus_val16 x2 = PSHR32(MULT16_16(tmp[2*i],tmp[2*i]) + MULT16_16(tmp[2*i+1],tmp[2*i+1]),16);
+         mean += x2;
+#ifdef FIXED_POINT
+         /* FIXME: Use PSHR16() instead */
+         tmp[i] = mem0 + PSHR32(x2-mem0,4);
+#else
+         tmp[i] = mem0 + MULT16_16_P15(QCONST16(.0625f,15),x2-mem0);
+#endif
+         mem0 = tmp[i];
+      }
+
+      mem0=0;
+      /* Backward pass to compute the pre-echo threshold */
+      for (i=len-1;i>=0;i--)
+      {
+#ifdef FIXED_POINT
+         /* FIXME: Use PSHR16() instead */
+         tmp[i] = mem0 + PSHR32(tmp[i]-mem0,3);
+#else
+         tmp[i] = mem0 + MULT16_16_P15(QCONST16(0.125f,15),tmp[i]-mem0);
+#endif
+         mem0 = tmp[i];
+      }
+      /*for (i=0;i<len;i++)printf("%f ", tmp[i]/mean);printf("\n");*/
+
+      /* Compute the ratio of the mean energy over the harmonic mean of the energy.
+         This essentially corresponds to a bitrate-normalized temporal noise-to-mask
+         ratio */
+
+      /* Inverse of the mean energy in Q15+6 */
+      norm = SHL32(EXTEND32(len),6+14)/ADD32(EPSILON,SHR32(mean,1));
+      /* Compute harmonic mean discarding the unreliable boundaries
+         The data is smooth, so we only take 1/4th of the samples */
+      unmask=0;
+      for (i=12;i<len-5;i+=4)
+      {
+         int id;
+#ifdef FIXED_POINT
+         id = IMAX(0,IMIN(127,MULT16_32_Q15(tmp[i],norm))); /* Do not round to nearest */
+#else
+         id = IMAX(0,IMIN(127,floor(64*norm*tmp[i]))); /* Do not round to nearest */
+#endif
+         unmask += inv_table[id];
+      }
+      /*printf("%d\n", unmask);*/
+      /* Normalize, compensate for the 1/4th of the sample and the factor of 6 in the inverse table */
+      unmask = 64*unmask*4/(6*(len-17));
+      if (unmask>mask_metric)
+      {
+         *tf_chan = c;
+         mask_metric = unmask;
+      }
+   }
+   is_transient = mask_metric>141;
+
+   /* Arbitrary metric for VBR boost */
+   tf_max = MAX16(0,celt_sqrt(64*mask_metric)-64);
+   /* *tf_estimate = 1 + MIN16(1, sqrt(MAX16(0, tf_max-30))/20); */
+   *tf_estimate = QCONST16(1.f, 14) + celt_sqrt(MAX16(0, SHL32(MULT16_16(QCONST16(0.0069,14),IMIN(163,tf_max)),14)-QCONST32(0.139,28)));
+   /*printf("%d %f\n", tf_max, mask_metric);*/
+   RESTORE_STACK;
+#ifdef FUZZING
+   is_transient = rand()&0x1;
+#endif
+   /*printf("%d %f %d\n", is_transient, (float)*tf_estimate, tf_max);*/
+   return is_transient;
+}
+
+/** Apply window and compute the MDCT for all sub-frames and
+    all channels in a frame */
+static void compute_mdcts(const CELTMode *mode, int shortBlocks, celt_sig * OPUS_RESTRICT in, celt_sig * OPUS_RESTRICT out, int C, int LM)
+{
+   const int overlap = OVERLAP(mode);
+   int N;
+   int B;
+   int shift;
+   int b, c;
+   if (shortBlocks)
+   {
+      B = shortBlocks;
+      N = mode->shortMdctSize;
+      shift = mode->maxLM;
+   } else {
+      B = 1;
+      N = mode->shortMdctSize<<LM;
+      shift = mode->maxLM-LM;
+   }
+   c=0; do {
+      for (b=0;b<B;b++)
+      {
+         /* Interleaving the sub-frames while doing the MDCTs */
+         clt_mdct_forward(&mode->mdct, in+c*(B*N+overlap)+b*N, &out[b+c*N*B], mode->window, overlap, shift, B);
+      }
+   } while (++c<C);
+}
+
+
+static void preemphasis(const opus_val16 * OPUS_RESTRICT pcmp, celt_sig * OPUS_RESTRICT inp,
+                        int N, int CC, int upsample, const opus_val16 *coef, celt_sig *mem, int clip)
+{
+   int i;
+   opus_val16 coef0, coef1;
+   celt_sig m;
+   int Nu;
+
+   coef0 = coef[0];
+   coef1 = coef[1];
+
+
+   Nu = N/upsample;
+   if (upsample!=1)
+   {
+      for (i=0;i<N;i++)
+         inp[i] = 0;
+   }
+   for (i=0;i<Nu;i++)
+   {
+      celt_sig x;
+
+      x = SCALEIN(pcmp[CC*i]);
+#ifndef FIXED_POINT
+      /* Replace NaNs with zeros */
+      if (!(x==x))
+         x = 0;
+#endif
+      inp[i*upsample] = x;
+   }
+
+#ifndef FIXED_POINT
+   if (clip)
+   {
+      /* Clip input to avoid encoding non-portable files */
+      for (i=0;i<Nu;i++)
+         inp[i*upsample] = MAX32(-65536.f, MIN32(65536.f,inp[i*upsample]));
+   }
+#endif
+   m = *mem;
+   if (coef1 == 0)
+   {
+      for (i=0;i<N;i++)
+      {
+         celt_sig x;
+         x = SHL32(inp[i], SIG_SHIFT);
+         /* Apply pre-emphasis */
+         inp[i] = x + m;
+         m = - MULT16_32_Q15(coef0, x);
+      }
+   } else {
+      opus_val16 coef2 = coef[2];
+      for (i=0;i<N;i++)
+      {
+         opus_val16 x, tmp;
+         x = inp[i];
+         /* Apply pre-emphasis */
+         tmp = MULT16_16(coef2, x);
+         inp[i] = tmp + m;
+         m = MULT16_32_Q15(coef1, inp[i]) - MULT16_32_Q15(coef0, tmp);
+      }
+   }
+   *mem = m;
+}
+
+
+
+static opus_val32 l1_metric(const celt_norm *tmp, int N, int LM, opus_val16 bias)
+{
+   int i;
+   opus_val32 L1;
+   L1 = 0;
+   for (i=0;i<N;i++)
+      L1 += EXTEND32(ABS16(tmp[i]));
+   /* When in doubt, prefer good freq resolution */
+   L1 = MAC16_32_Q15(L1, LM*bias, L1);
+   return L1;
+
+}
+
+static int tf_analysis(const CELTMode *m, int len, int C, int isTransient,
+      int *tf_res, int nbCompressedBytes, celt_norm *X, int N0, int LM,
+      int *tf_sum, opus_val16 tf_estimate, int tf_chan)
+{
+   int i;
+   VARDECL(int, metric);
+   int cost0;
+   int cost1;
+   VARDECL(int, path0);
+   VARDECL(int, path1);
+   VARDECL(celt_norm, tmp);
+   VARDECL(celt_norm, tmp_1);
+   int lambda;
+   int sel;
+   int selcost[2];
+   int tf_select=0;
+   opus_val16 bias;
+
+   SAVE_STACK;
+   bias = MULT16_16_Q14(QCONST16(.04f,15), MAX16(-QCONST16(.25f,14), QCONST16(1.5f,14)-tf_estimate));
+   /*printf("%f ", bias);*/
+
+   if (nbCompressedBytes<15*C)
+   {
+      *tf_sum = 0;
+      for (i=0;i<len;i++)
+         tf_res[i] = isTransient;
+      return 0;
+   }
+   if (nbCompressedBytes<40)
+      lambda = 12;
+   else if (nbCompressedBytes<60)
+      lambda = 6;
+   else if (nbCompressedBytes<100)
+      lambda = 4;
+   else
+      lambda = 3;
+   lambda*=2;
+   ALLOC(metric, len, int);
+   ALLOC(tmp, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm);
+   ALLOC(tmp_1, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm);
+   ALLOC(path0, len, int);
+   ALLOC(path1, len, int);
+
+   *tf_sum = 0;
+   for (i=0;i<len;i++)
+   {
+      int j, k, N;
+      int narrow;
+      opus_val32 L1, best_L1;
+      int best_level=0;
+      N = (m->eBands[i+1]-m->eBands[i])<<LM;
+      /* band is too narrow to be split down to LM=-1 */
+      narrow = (m->eBands[i+1]-m->eBands[i])==1;
+      for (j=0;j<N;j++)
+         tmp[j] = X[tf_chan*N0 + j+(m->eBands[i]<<LM)];
+      /* Just add the right channel if we're in stereo */
+      /*if (C==2)
+         for (j=0;j<N;j++)
+            tmp[j] = ADD16(SHR16(tmp[j], 1),SHR16(X[N0+j+(m->eBands[i]<<LM)], 1));*/
+      L1 = l1_metric(tmp, N, isTransient ? LM : 0, bias);
+      best_L1 = L1;
+      /* Check the -1 case for transients */
+      if (isTransient && !narrow)
+      {
+         for (j=0;j<N;j++)
+            tmp_1[j] = tmp[j];
+         haar1(tmp_1, N>>LM, 1<<LM);
+         L1 = l1_metric(tmp_1, N, LM+1, bias);
+         if (L1<best_L1)
+         {
+            best_L1 = L1;
+            best_level = -1;
+         }
+      }
+      /*printf ("%f ", L1);*/
+      for (k=0;k<LM+!(isTransient||narrow);k++)
+      {
+         int B;
+
+         if (isTransient)
+            B = (LM-k-1);
+         else
+            B = k+1;
+
+         haar1(tmp, N>>k, 1<<k);
+
+         L1 = l1_metric(tmp, N, B, bias);
+
+         if (L1 < best_L1)
+         {
+            best_L1 = L1;
+            best_level = k+1;
+         }
+      }
+      /*printf ("%d ", isTransient ? LM-best_level : best_level);*/
+      /* metric is in Q1 to be able to select the mid-point (-0.5) for narrower bands */
+      if (isTransient)
+         metric[i] = 2*best_level;
+      else
+         metric[i] = -2*best_level;
+      *tf_sum += (isTransient ? LM : 0) - metric[i]/2;
+      /* For bands that can't be split to -1, set the metric to the half-way point to avoid
+         biasing the decision */
+      if (narrow && (metric[i]==0 || metric[i]==-2*LM))
+         metric[i]-=1;
+      /*printf("%d ", metric[i]);*/
+   }
+   /*printf("\n");*/
+   /* Search for the optimal tf resolution, including tf_select */
+   tf_select = 0;
+   for (sel=0;sel<2;sel++)
+   {
+      cost0 = 0;
+      cost1 = isTransient ? 0 : lambda;
+      for (i=1;i<len;i++)
+      {
+         int curr0, curr1;
+         curr0 = IMIN(cost0, cost1 + lambda);
+         curr1 = IMIN(cost0 + lambda, cost1);
+         cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+0]);
+         cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+1]);
+      }
+      cost0 = IMIN(cost0, cost1);
+      selcost[sel]=cost0;
+   }
+   /* For now, we're conservative and only allow tf_select=1 for transients.
+    * If tests confirm it's useful for non-transients, we could allow it. */
+   if (selcost[1]<selcost[0] && isTransient)
+      tf_select=1;
+   cost0 = 0;
+   cost1 = isTransient ? 0 : lambda;
+   /* Viterbi forward pass */
+   for (i=1;i<len;i++)
+   {
+      int curr0, curr1;
+      int from0, from1;
+
+      from0 = cost0;
+      from1 = cost1 + lambda;
+      if (from0 < from1)
+      {
+         curr0 = from0;
+         path0[i]= 0;
+      } else {
+         curr0 = from1;
+         path0[i]= 1;
+      }
+
+      from0 = cost0 + lambda;
+      from1 = cost1;
+      if (from0 < from1)
+      {
+         curr1 = from0;
+         path1[i]= 0;
+      } else {
+         curr1 = from1;
+         path1[i]= 1;
+      }
+      cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]);
+      cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]);
+   }
+   tf_res[len-1] = cost0 < cost1 ? 0 : 1;
+   /* Viterbi backward pass to check the decisions */
+   for (i=len-2;i>=0;i--)
+   {
+      if (tf_res[i+1] == 1)
+         tf_res[i] = path1[i+1];
+      else
+         tf_res[i] = path0[i+1];
+   }
+   /*printf("%d %f\n", *tf_sum, tf_estimate);*/
+   RESTORE_STACK;
+#ifdef FUZZING
+   tf_select = rand()&0x1;
+   tf_res[0] = rand()&0x1;
+   for (i=1;i<len;i++)
+      tf_res[i] = tf_res[i-1] ^ ((rand()&0xF) == 0);
+#endif
+   return tf_select;
+}
+
+static void tf_encode(int start, int end, int isTransient, int *tf_res, int LM, int tf_select, ec_enc *enc)
+{
+   int curr, i;
+   int tf_select_rsv;
+   int tf_changed;
+   int logp;
+   opus_uint32 budget;
+   opus_uint32 tell;
+   budget = enc->storage*8;
+   tell = ec_tell(enc);
+   logp = isTransient ? 2 : 4;
+   /* Reserve space to code the tf_select decision. */
+   tf_select_rsv = LM>0 && tell+logp+1 <= budget;
+   budget -= tf_select_rsv;
+   curr = tf_changed = 0;
+   for (i=start;i<end;i++)
+   {
+      if (tell+logp<=budget)
+      {
+         ec_enc_bit_logp(enc, tf_res[i] ^ curr, logp);
+         tell = ec_tell(enc);
+         curr = tf_res[i];
+         tf_changed |= curr;
+      }
+      else
+         tf_res[i] = curr;
+      logp = isTransient ? 4 : 5;
+   }
+   /* Only code tf_select if it would actually make a difference. */
+   if (tf_select_rsv &&
+         tf_select_table[LM][4*isTransient+0+tf_changed]!=
+         tf_select_table[LM][4*isTransient+2+tf_changed])
+      ec_enc_bit_logp(enc, tf_select, 1);
+   else
+      tf_select = 0;
+   for (i=start;i<end;i++)
+      tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]];
+   /*for(i=0;i<end;i++)printf("%d ", isTransient ? tf_res[i] : LM+tf_res[i]);printf("\n");*/
+}
+
+
+static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X,
+      const opus_val16 *bandLogE, int end, int LM, int C, int N0,
+      AnalysisInfo *analysis, opus_val16 *stereo_saving, opus_val16 tf_estimate,
+      int intensity)
+{
+   int i;
+   opus_val32 diff=0;
+   int c;
+   int trim_index = 5;
+   opus_val16 trim = QCONST16(5.f, 8);
+   opus_val16 logXC, logXC2;
+   if (C==2)
+   {
+      opus_val16 sum = 0; /* Q10 */
+      opus_val16 minXC; /* Q10 */
+      /* Compute inter-channel correlation for low frequencies */
+      for (i=0;i<8;i++)
+      {
+         int j;
+         opus_val32 partial = 0;
+         for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++)
+            partial = MAC16_16(partial, X[j], X[N0+j]);
+         sum = ADD16(sum, EXTRACT16(SHR32(partial, 18)));
+      }
+      sum = MULT16_16_Q15(QCONST16(1.f/8, 15), sum);
+      sum = MIN16(QCONST16(1.f, 10), ABS16(sum));
+      minXC = sum;
+      for (i=8;i<intensity;i++)
+      {
+         int j;
+         opus_val32 partial = 0;
+         for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++)
+            partial = MAC16_16(partial, X[j], X[N0+j]);
+         minXC = MIN16(minXC, ABS16(EXTRACT16(SHR32(partial, 18))));
+      }
+      minXC = MIN16(QCONST16(1.f, 10), ABS16(minXC));
+      /*printf ("%f\n", sum);*/
+      if (sum > QCONST16(.995f,10))
+         trim_index-=4;
+      else if (sum > QCONST16(.92f,10))
+         trim_index-=3;
+      else if (sum > QCONST16(.85f,10))
+         trim_index-=2;
+      else if (sum > QCONST16(.8f,10))
+         trim_index-=1;
+      /* mid-side savings estimations based on the LF average*/
+      logXC = celt_log2(QCONST32(1.001f, 20)-MULT16_16(sum, sum));
+      /* mid-side savings estimations based on min correlation */
+      logXC2 = MAX16(HALF16(logXC), celt_log2(QCONST32(1.001f, 20)-MULT16_16(minXC, minXC)));
+#ifdef FIXED_POINT
+      /* Compensate for Q20 vs Q14 input and convert output to Q8 */
+      logXC = PSHR32(logXC-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8);
+      logXC2 = PSHR32(logXC2-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8);
+#endif
+
+      trim += MAX16(-QCONST16(4.f, 8), MULT16_16_Q15(QCONST16(.75f,15),logXC));
+      *stereo_saving = MIN16(*stereo_saving + QCONST16(0.25f, 8), -HALF16(logXC2));
+   }
+
+   /* Estimate spectral tilt */
+   c=0; do {
+      for (i=0;i<end-1;i++)
+      {
+         diff += bandLogE[i+c*m->nbEBands]*(opus_int32)(2+2*i-end);
+      }
+   } while (++c<C);
+   diff /= C*(end-1);
+   /*printf("%f\n", diff);*/
+   if (diff > QCONST16(2.f, DB_SHIFT))
+      trim_index--;
+   if (diff > QCONST16(8.f, DB_SHIFT))
+      trim_index--;
+   if (diff < -QCONST16(4.f, DB_SHIFT))
+      trim_index++;
+   if (diff < -QCONST16(10.f, DB_SHIFT))
+      trim_index++;
+   trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), SHR16(diff+QCONST16(1.f, DB_SHIFT),DB_SHIFT-8)/6 ));
+   trim -= 2*SHR16(tf_estimate-QCONST16(1.f,14), 14-8);
+#ifndef FIXED_POINT
+   if (analysis->valid)
+   {
+      trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), 2*(analysis->tonality_slope+.05)));
+   }
+#endif
+
+#ifdef FIXED_POINT
+   trim_index = PSHR32(trim, 8);
+#else
+   trim_index = floor(.5+trim);
+#endif
+   if (trim_index<0)
+      trim_index = 0;
+   if (trim_index>10)
+      trim_index = 10;
+   /*printf("%d\n", trim_index);*/
+#ifdef FUZZING
+   trim_index = rand()%11;
+#endif
+   return trim_index;
+}
+
+static int stereo_analysis(const CELTMode *m, const celt_norm *X,
+      int LM, int N0)
+{
+   int i;
+   int thetas;
+   opus_val32 sumLR = EPSILON, sumMS = EPSILON;
+
+   /* Use the L1 norm to model the entropy of the L/R signal vs the M/S signal */
+   for (i=0;i<13;i++)
+   {
+      int j;
+      for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++)
+      {
+         opus_val32 L, R, M, S;
+         /* We cast to 32-bit first because of the -32768 case */
+         L = EXTEND32(X[j]);
+         R = EXTEND32(X[N0+j]);
+         M = ADD32(L, R);
+         S = SUB32(L, R);
+         sumLR = ADD32(sumLR, ADD32(ABS32(L), ABS32(R)));
+         sumMS = ADD32(sumMS, ADD32(ABS32(M), ABS32(S)));
+      }
+   }
+   sumMS = MULT16_32_Q15(QCONST16(0.707107f, 15), sumMS);
+   thetas = 13;
+   /* We don't need thetas for lower bands with LM<=1 */
+   if (LM<=1)
+      thetas -= 8;
+   return MULT16_32_Q15((m->eBands[13]<<(LM+1))+thetas, sumMS)
+         > MULT16_32_Q15(m->eBands[13]<<(LM+1), sumLR);
+}
+
+static int run_prefilter(CELTEncoder *st, celt_sig *in, celt_sig *prefilter_mem, int CC, int N,
+      int prefilter_tapset, int *pitch, opus_val16 *gain, int *qgain, int enabled, int nbAvailableBytes)
+{
+   int c;
+   VARDECL(celt_sig, _pre);
+   celt_sig *pre[2];
+   const CELTMode *mode;
+   int pitch_index;
+   opus_val16 gain1;
+   opus_val16 pf_threshold;
+   int pf_on;
+   int qg;
+   SAVE_STACK;
+
+   mode = st->mode;
+   ALLOC(_pre, CC*(N+COMBFILTER_MAXPERIOD), celt_sig);
+
+   pre[0] = _pre;
+   pre[1] = _pre + (N+COMBFILTER_MAXPERIOD);
+
+
+   c=0; do {
+      OPUS_COPY(pre[c], prefilter_mem+c*COMBFILTER_MAXPERIOD, COMBFILTER_MAXPERIOD);
+      OPUS_COPY(pre[c]+COMBFILTER_MAXPERIOD, in+c*(N+st->overlap)+st->overlap, N);
+   } while (++c<CC);
+
+   if (enabled)
+   {
+      VARDECL(opus_val16, pitch_buf);
+      ALLOC(pitch_buf, (COMBFILTER_MAXPERIOD+N)>>1, opus_val16);
+
+      pitch_downsample(pre, pitch_buf, COMBFILTER_MAXPERIOD+N, CC);
+      /* Don't search for the fir last 1.5 octave of the range because
+         there's too many false-positives due to short-term correlation */
+      pitch_search(pitch_buf+(COMBFILTER_MAXPERIOD>>1), pitch_buf, N,
+            COMBFILTER_MAXPERIOD-3*COMBFILTER_MINPERIOD, &pitch_index);
+      pitch_index = COMBFILTER_MAXPERIOD-pitch_index;
+
+      gain1 = remove_doubling(pitch_buf, COMBFILTER_MAXPERIOD, COMBFILTER_MINPERIOD,
+            N, &pitch_index, st->prefilter_period, st->prefilter_gain);
+      if (pitch_index > COMBFILTER_MAXPERIOD-2)
+         pitch_index = COMBFILTER_MAXPERIOD-2;
+      gain1 = MULT16_16_Q15(QCONST16(.7f,15),gain1);
+      /*printf("%d %d %f %f\n", pitch_change, pitch_index, gain1, st->analysis.tonality);*/
+      if (st->loss_rate>2)
+         gain1 = HALF32(gain1);
+      if (st->loss_rate>4)
+         gain1 = HALF32(gain1);
+      if (st->loss_rate>8)
+         gain1 = 0;
+   } else {
+      gain1 = 0;
+      pitch_index = COMBFILTER_MINPERIOD;
+   }
+
+   /* Gain threshold for enabling the prefilter/postfilter */
+   pf_threshold = QCONST16(.2f,15);
+
+   /* Adjusting the threshold based on rate and continuity */
+   if (abs(pitch_index-st->prefilter_period)*10>pitch_index)
+      pf_threshold += QCONST16(.2f,15);
+   if (nbAvailableBytes<25)
+      pf_threshold += QCONST16(.1f,15);
+   if (nbAvailableBytes<35)
+      pf_threshold += QCONST16(.1f,15);
+   if (st->prefilter_gain > QCONST16(.4f,15))
+      pf_threshold -= QCONST16(.1f,15);
+   if (st->prefilter_gain > QCONST16(.55f,15))
+      pf_threshold -= QCONST16(.1f,15);
+
+   /* Hard threshold at 0.2 */
+   pf_threshold = MAX16(pf_threshold, QCONST16(.2f,15));
+   if (gain1<pf_threshold)
+   {
+      gain1 = 0;
+      pf_on = 0;
+      qg = 0;
+   } else {
+      /*This block is not gated by a total bits check only because
+        of the nbAvailableBytes check above.*/
+      if (ABS16(gain1-st->prefilter_gain)<QCONST16(.1f,15))
+         gain1=st->prefilter_gain;
+
+#ifdef FIXED_POINT
+      qg = ((gain1+1536)>>10)/3-1;
+#else
+      qg = (int)floor(.5f+gain1*32/3)-1;
+#endif
+      qg = IMAX(0, IMIN(7, qg));
+      gain1 = QCONST16(0.09375f,15)*(qg+1);
+      pf_on = 1;
+   }
+   /*printf("%d %f\n", pitch_index, gain1);*/
+
+   c=0; do {
+      int offset = mode->shortMdctSize-st->overlap;
+      st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD);
+      OPUS_COPY(in+c*(N+st->overlap), st->in_mem+c*(st->overlap), st->overlap);
+      if (offset)
+         comb_filter(in+c*(N+st->overlap)+st->overlap, pre[c]+COMBFILTER_MAXPERIOD,
+               st->prefilter_period, st->prefilter_period, offset, -st->prefilter_gain, -st->prefilter_gain,
+               st->prefilter_tapset, st->prefilter_tapset, NULL, 0);
+
+      comb_filter(in+c*(N+st->overlap)+st->overlap+offset, pre[c]+COMBFILTER_MAXPERIOD+offset,
+            st->prefilter_period, pitch_index, N-offset, -st->prefilter_gain, -gain1,
+            st->prefilter_tapset, prefilter_tapset, mode->window, st->overlap);
+      OPUS_COPY(st->in_mem+c*(st->overlap), in+c*(N+st->overlap)+N, st->overlap);
+
+      if (N>COMBFILTER_MAXPERIOD)
+      {
+         OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, pre[c]+N, COMBFILTER_MAXPERIOD);
+      } else {
+         OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, prefilter_mem+c*COMBFILTER_MAXPERIOD+N, COMBFILTER_MAXPERIOD-N);
+         OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD+COMBFILTER_MAXPERIOD-N, pre[c]+COMBFILTER_MAXPERIOD, N);
+      }
+   } while (++c<CC);
+
+   RESTORE_STACK;
+   *gain = gain1;
+   *pitch = pitch_index;
+   *qgain = qg;
+   return pf_on;
+}
+
+int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes, ec_enc *enc)
+{
+   int i, c, N;
+   opus_int32 bits;
+   ec_enc _enc;
+   VARDECL(celt_sig, in);
+   VARDECL(celt_sig, freq);
+   VARDECL(celt_norm, X);
+   VARDECL(celt_ener, bandE);
+   VARDECL(opus_val16, bandLogE);
+   VARDECL(opus_val16, bandLogE2);
+   VARDECL(int, fine_quant);
+   VARDECL(opus_val16, error);
+   VARDECL(int, pulses);
+   VARDECL(int, cap);
+   VARDECL(int, offsets);
+   VARDECL(int, fine_priority);
+   VARDECL(int, tf_res);
+   VARDECL(unsigned char, collapse_masks);
+   celt_sig *prefilter_mem;
+   opus_val16 *oldBandE, *oldLogE, *oldLogE2;
+   int shortBlocks=0;
+   int isTransient=0;
+   const int CC = st->channels;
+   const int C = st->stream_channels;
+   int LM, M;
+   int tf_select;
+   int nbFilledBytes, nbAvailableBytes;
+   int effEnd;
+   int codedBands;
+   int tf_sum;
+   int alloc_trim;
+   int pitch_index=COMBFILTER_MINPERIOD;
+   opus_val16 gain1 = 0;
+   int dual_stereo=0;
+   int effectiveBytes;
+   int dynalloc_logp;
+   opus_int32 vbr_rate;
+   opus_int32 total_bits;
+   opus_int32 total_boost;
+   opus_int32 balance;
+   opus_int32 tell;
+   int prefilter_tapset=0;
+   int pf_on;
+   int anti_collapse_rsv;
+   int anti_collapse_on=0;
+   int silence=0;
+   int tf_chan = 0;
+   opus_val16 tf_estimate;
+   int pitch_change=0;
+   opus_int32 tot_boost=0;
+   opus_val16 sample_max;
+   opus_val16 maxDepth;
+   const OpusCustomMode *mode;
+   int nbEBands;
+   int overlap;
+   const opus_int16 *eBands;
+   int secondMdct;
+   ALLOC_STACK;
+
+   mode = st->mode;
+   nbEBands = mode->nbEBands;
+   overlap = mode->overlap;
+   eBands = mode->eBands;
+   tf_estimate = QCONST16(1.0f,14);
+   if (nbCompressedBytes<2 || pcm==NULL)
+     return OPUS_BAD_ARG;
+
+   frame_size *= st->upsample;
+   for (LM=0;LM<=mode->maxLM;LM++)
+      if (mode->shortMdctSize<<LM==frame_size)
+         break;
+   if (LM>mode->maxLM)
+      return OPUS_BAD_ARG;
+   M=1<<LM;
+   N = M*mode->shortMdctSize;
+
+   prefilter_mem = st->in_mem+CC*(st->overlap);
+   oldBandE = (opus_val16*)(st->in_mem+CC*(st->overlap+COMBFILTER_MAXPERIOD));
+   oldLogE = oldBandE + CC*nbEBands;
+   oldLogE2 = oldLogE + CC*nbEBands;
+
+   if (enc==NULL)
+   {
+      tell=1;
+      nbFilledBytes=0;
+   } else {
+      tell=ec_tell(enc);
+      nbFilledBytes=(tell+4)>>3;
+   }
+
+#ifdef CUSTOM_MODES
+   if (st->signalling && enc==NULL)
+   {
+      int tmp = (mode->effEBands-st->end)>>1;
+      st->end = IMAX(1, mode->effEBands-tmp);
+      compressed[0] = tmp<<5;
+      compressed[0] |= LM<<3;
+      compressed[0] |= (C==2)<<2;
+      /* Convert "standard mode" to Opus header */
+      if (mode->Fs==48000 && mode->shortMdctSize==120)
+      {
+         int c0 = toOpus(compressed[0]);
+         if (c0<0)
+            return OPUS_BAD_ARG;
+         compressed[0] = c0;
+      }
+      compressed++;
+      nbCompressedBytes--;
+   }
+#else
+   celt_assert(st->signalling==0);
+#endif
+
+   /* Can't produce more than 1275 output bytes */
+   nbCompressedBytes = IMIN(nbCompressedBytes,1275);
+   nbAvailableBytes = nbCompressedBytes - nbFilledBytes;
+
+   if (st->vbr && st->bitrate!=OPUS_BITRATE_MAX)
+   {
+      opus_int32 den=mode->Fs>>BITRES;
+      vbr_rate=(st->bitrate*frame_size+(den>>1))/den;
+#ifdef CUSTOM_MODES
+      if (st->signalling)
+         vbr_rate -= 8<<BITRES;
+#endif
+      effectiveBytes = vbr_rate>>(3+BITRES);
+   } else {
+      opus_int32 tmp;
+      vbr_rate = 0;
+      tmp = st->bitrate*frame_size;
+      if (tell>1)
+         tmp += tell;
+      if (st->bitrate!=OPUS_BITRATE_MAX)
+         nbCompressedBytes = IMAX(2, IMIN(nbCompressedBytes,
+               (tmp+4*mode->Fs)/(8*mode->Fs)-!!st->signalling));
+      effectiveBytes = nbCompressedBytes;
+   }
+
+   if (enc==NULL)
+   {
+      ec_enc_init(&_enc, compressed, nbCompressedBytes);
+      enc = &_enc;
+   }
+
+   if (vbr_rate>0)
+   {
+      /* Computes the max bit-rate allowed in VBR mode to avoid violating the
+          target rate and buffering.
+         We must do this up front so that bust-prevention logic triggers
+          correctly if we don't have enough bits. */
+      if (st->constrained_vbr)
+      {
+         opus_int32 vbr_bound;
+         opus_int32 max_allowed;
+         /* We could use any multiple of vbr_rate as bound (depending on the
+             delay).
+            This is clamped to ensure we use at least two bytes if the encoder
+             was entirely empty, but to allow 0 in hybrid mode. */
+         vbr_bound = vbr_rate;
+         max_allowed = IMIN(IMAX(tell==1?2:0,
+               (vbr_rate+vbr_bound-st->vbr_reservoir)>>(BITRES+3)),
+               nbAvailableBytes);
+         if(max_allowed < nbAvailableBytes)
+         {
+            nbCompressedBytes = nbFilledBytes+max_allowed;
+            nbAvailableBytes = max_allowed;
+            ec_enc_shrink(enc, nbCompressedBytes);
+         }
+      }
+   }
+   total_bits = nbCompressedBytes*8;
+
+   effEnd = st->end;
+   if (effEnd > mode->effEBands)
+      effEnd = mode->effEBands;
+
+   ALLOC(in, CC*(N+st->overlap), celt_sig);
+
+   sample_max=MAX16(st->overlap_max, celt_maxabs16(pcm, C*(N-overlap)/st->upsample));
+   st->overlap_max=celt_maxabs16(pcm+C*(N-overlap)/st->upsample, C*overlap/st->upsample);
+   sample_max=MAX16(sample_max, st->overlap_max);
+#ifdef FIXED_POINT
+   silence = (sample_max==0);
+#else
+   silence = (sample_max <= (opus_val16)1/(1<<st->lsb_depth));
+#endif
+#ifdef FUZZING
+   if ((rand()&0x3F)==0)
+      silence = 1;
+#endif
+   if (tell==1)
+      ec_enc_bit_logp(enc, silence, 15);
+   else
+      silence=0;
+   if (silence)
+   {
+      /*In VBR mode there is no need to send more than the minimum. */
+      if (vbr_rate>0)
+      {
+         effectiveBytes=nbCompressedBytes=IMIN(nbCompressedBytes, nbFilledBytes+2);
+         total_bits=nbCompressedBytes*8;
+         nbAvailableBytes=2;
+         ec_enc_shrink(enc, nbCompressedBytes);
+      }
+      /* Pretend we've filled all the remaining bits with zeros
+            (that's what the initialiser did anyway) */
+      tell = nbCompressedBytes*8;
+      enc->nbits_total+=tell-ec_tell(enc);
+   }
+   c=0; do {
+      preemphasis(pcm+c, in+c*(N+st->overlap)+st->overlap, N, CC, st->upsample,
+                  mode->preemph, st->preemph_memE+c, st->clip);
+   } while (++c<CC);
+
+
+
+   /* Find pitch period and gain */
+   {
+      int enabled;
+      int qg;
+      enabled = nbAvailableBytes>12*C && st->start==0 && !silence && !st->disable_pf && st->complexity >= 5;
+
+      prefilter_tapset = st->tapset_decision;
+      pf_on = run_prefilter(st, in, prefilter_mem, CC, N, prefilter_tapset, &pitch_index, &gain1, &qg, enabled, nbAvailableBytes);
+      if ((gain1 > QCONST16(.4f,15) || st->prefilter_gain > QCONST16(.4f,15)) && st->analysis.tonality > .3
+            && (pitch_index > 1.26*st->prefilter_period || pitch_index < .79*st->prefilter_period))
+         pitch_change = 1;
+      if (pf_on==0)
+      {
+         if(st->start==0 && tell+16<=total_bits)
+            ec_enc_bit_logp(enc, 0, 1);
+      } else {
+         /*This block is not gated by a total bits check only because
+           of the nbAvailableBytes check above.*/
+         int octave;
+         ec_enc_bit_logp(enc, 1, 1);
+         pitch_index += 1;
+         octave = EC_ILOG(pitch_index)-5;
+         ec_enc_uint(enc, octave, 6);
+         ec_enc_bits(enc, pitch_index-(16<<octave), 4+octave);
+         pitch_index -= 1;
+         ec_enc_bits(enc, qg, 3);
+         ec_enc_icdf(enc, prefilter_tapset, tapset_icdf, 2);
+      }
+   }
+
+   isTransient = 0;
+   shortBlocks = 0;
+   if (LM>0 && ec_tell(enc)+3<=total_bits)
+   {
+      if (st->complexity > 1)
+      {
+         isTransient = transient_analysis(in, N+st->overlap, CC,
+                  &tf_estimate, &tf_chan);
+         if (isTransient)
+            shortBlocks = M;
+      }
+      ec_enc_bit_logp(enc, isTransient, 3);
+   }
+
+   ALLOC(freq, CC*N, celt_sig); /**< Interleaved signal MDCTs */
+   ALLOC(bandE,nbEBands*CC, celt_ener);
+   ALLOC(bandLogE,nbEBands*CC, opus_val16);
+
+   secondMdct = shortBlocks && st->complexity>=8;
+   ALLOC(bandLogE2, C*nbEBands, opus_val16);
+   if (secondMdct)
+   {
+      compute_mdcts(mode, 0, in, freq, CC, LM);
+      if (CC==2&&C==1)
+      {
+         for (i=0;i<N;i++)
+            freq[i] = ADD32(HALF32(freq[i]), HALF32(freq[N+i]));
+      }
+      if (st->upsample != 1)
+      {
+         c=0; do
+         {
+            int bound = N/st->upsample;
+            for (i=0;i<bound;i++)
+               freq[c*N+i] *= st->upsample;
+            for (;i<N;i++)
+               freq[c*N+i] = 0;
+         } while (++c<C);
+      }
+      compute_band_energies(mode, freq, bandE, effEnd, C, M);
+      amp2Log2(mode, effEnd, st->end, bandE, bandLogE2, C);
+      for (i=0;i<C*nbEBands;i++)
+         bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT));
+   }
+
+   compute_mdcts(mode, shortBlocks, in, freq, CC, LM);
+
+   if (CC==2&&C==1)
+   {
+      for (i=0;i<N;i++)
+         freq[i] = ADD32(HALF32(freq[i]), HALF32(freq[N+i]));
+      tf_chan = 0;
+   }
+   if (st->upsample != 1)
+   {
+      c=0; do
+      {
+         int bound = N/st->upsample;
+         for (i=0;i<bound;i++)
+            freq[c*N+i] *= st->upsample;
+         for (;i<N;i++)
+            freq[c*N+i] = 0;
+      } while (++c<C);
+   }
+   compute_band_energies(mode, freq, bandE, effEnd, C, M);
+
+   amp2Log2(mode, effEnd, st->end, bandE, bandLogE, C);
+   /*for (i=0;i<21;i++)
+      printf("%f ", bandLogE[i]);
+   printf("\n");*/
+
+   if (!secondMdct)
+   {
+      for (i=0;i<C*nbEBands;i++)
+         bandLogE2[i] = bandLogE[i];
+   }
+
+   ALLOC(X, C*N, celt_norm);         /**< Interleaved normalised MDCTs */
+
+   /* Band normalisation */
+   normalise_bands(mode, freq, X, bandE, effEnd, C, M);
+
+   ALLOC(tf_res, nbEBands, int);
+   tf_select = tf_analysis(mode, effEnd, C, isTransient, tf_res, effectiveBytes, X, N, LM, &tf_sum, tf_estimate, tf_chan);
+   for (i=effEnd;i<st->end;i++)
+      tf_res[i] = tf_res[effEnd-1];
+
+   ALLOC(error, C*nbEBands, opus_val16);
+   quant_coarse_energy(mode, st->start, st->end, effEnd, bandLogE,
+         oldBandE, total_bits, error, enc,
+         C, LM, nbAvailableBytes, st->force_intra,
+         &st->delayedIntra, st->complexity >= 4, st->loss_rate);
+
+   tf_encode(st->start, st->end, isTransient, tf_res, LM, tf_select, enc);
+
+   if (ec_tell(enc)+4<=total_bits)
+   {
+      if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C)
+      {
+         if (st->complexity == 0)
+            st->spread_decision = SPREAD_NONE;
+      } else {
+         if (st->analysis.valid)
+         {
+            static const opus_val16 spread_thresholds[3] = {-QCONST16(.6f, 15), -QCONST16(.2f, 15), -QCONST16(.07f, 15)};
+            static const opus_val16 spread_histeresis[3] = {QCONST16(.15f, 15), QCONST16(.07f, 15), QCONST16(.02f, 15)};
+            static const opus_val16 tapset_thresholds[2] = {QCONST16(.0f, 15), QCONST16(.15f, 15)};
+            static const opus_val16 tapset_histeresis[2] = {QCONST16(.1f, 15), QCONST16(.05f, 15)};
+            st->spread_decision = hysteresis_decision(-st->analysis.tonality, spread_thresholds, spread_histeresis, 3, st->spread_decision);
+            st->tapset_decision = hysteresis_decision(st->analysis.tonality_slope, tapset_thresholds, tapset_histeresis, 2, st->tapset_decision);
+         } else {
+            st->spread_decision = spreading_decision(mode, X,
+                  &st->tonal_average, st->spread_decision, &st->hf_average,
+                  &st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M);
+         }
+         /*printf("%d %d\n", st->tapset_decision, st->spread_decision);*/
+         /*printf("%f %d %f %d\n\n", st->analysis.tonality, st->spread_decision, st->analysis.tonality_slope, st->tapset_decision);*/
+      }
+      ec_enc_icdf(enc, st->spread_decision, spread_icdf, 5);
+   }
+
+   ALLOC(cap, nbEBands, int);
+   ALLOC(offsets, nbEBands, int);
+
+   init_caps(mode,cap,LM,C);
+   for (i=0;i<nbEBands;i++)
+      offsets[i] = 0;
+   /* Dynamic allocation code */
+   maxDepth=-QCONST16(32.f, DB_SHIFT);
+   /* Make sure that dynamic allocation can't make us bust the budget */
+   if (effectiveBytes > 50 && LM>=1)
+   {
+      int last=0;
+      VARDECL(opus_val16, follower);
+      ALLOC(follower, C*nbEBands, opus_val16);
+      c=0;do
+      {
+         follower[c*nbEBands] = bandLogE2[c*nbEBands];
+         for (i=1;i<st->end;i++)
+         {
+            /* The last band to be at least 3 dB higher than the previous one
+               is the last we'll consider. Otherwise, we run into problems on
+               bandlimited signals. */
+            if (bandLogE2[c*nbEBands+i] > bandLogE2[c*nbEBands+i-1]+QCONST16(.5f,DB_SHIFT))
+               last=i;
+            follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i-1]+QCONST16(1.5f,DB_SHIFT), bandLogE2[c*nbEBands+i]);
+         }
+         for (i=last-1;i>=0;i--)
+            follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i], MIN16(follower[c*nbEBands+i+1]+QCONST16(2.f,DB_SHIFT), bandLogE2[c*nbEBands+i]));
+         for (i=0;i<st->end;i++)
+         {
+            opus_val16 noise_floor;
+            /* Noise floor must take into account eMeans, the depth, the width of the bands
+               and the preemphasis filter (approx. square of bark band ID) */
+            noise_floor = MULT16_16(QCONST16(0.0625f, DB_SHIFT),mode->logN[i])
+                  +QCONST16(.5f,DB_SHIFT)+SHL16(9-st->lsb_depth,DB_SHIFT)-SHL16(eMeans[i],6)
+                  +MULT16_16(QCONST16(.0062,DB_SHIFT),(i+5)*(i+5));
+            follower[c*nbEBands+i] = MAX16(follower[c*nbEBands+i], noise_floor);
+            maxDepth = MAX16(maxDepth, bandLogE[c*nbEBands+i]-noise_floor);
+         }
+      } while (++c<C);
+      if (C==2)
+      {
+         for (i=st->start;i<st->end;i++)
+         {
+            /* Consider 24 dB "cross-talk" */
+            follower[nbEBands+i] = MAX16(follower[nbEBands+i], follower[                   i]-QCONST16(4.f,DB_SHIFT));
+            follower[                   i] = MAX16(follower[                   i], follower[nbEBands+i]-QCONST16(4.f,DB_SHIFT));
+            follower[i] = HALF16(MAX16(0, bandLogE[i]-follower[i]) + MAX16(0, bandLogE[nbEBands+i]-follower[nbEBands+i]));
+         }
+      } else {
+         for (i=st->start;i<st->end;i++)
+         {
+            follower[i] = MAX16(0, bandLogE[i]-follower[i]);
+         }
+      }
+      /* For non-transient CBR/CVBR frames, halve the dynalloc contribution */
+      if ((!st->vbr || st->constrained_vbr)&&!isTransient)
+      {
+         for (i=st->start;i<st->end;i++)
+            follower[i] = HALF16(follower[i]);
+      }
+      for (i=st->start;i<st->end;i++)
+      {
+         int width;
+         int boost;
+         int boost_bits;
+
+         if (i<8)
+            follower[i] *= 2;
+         if (i>=12)
+            follower[i] = HALF16(follower[i]);
+         follower[i] = MIN16(follower[i], QCONST16(4, DB_SHIFT));
+
+         width = C*(eBands[i+1]-eBands[i])<<LM;
+         if (width<6)
+         {
+            boost = SHR32(EXTEND32(follower[i]),DB_SHIFT);
+            boost_bits = boost*width<<BITRES;
+         } else if (width > 48) {
+            boost = SHR32(EXTEND32(follower[i])*8,DB_SHIFT);
+            boost_bits = (boost*width<<BITRES)/8;
+         } else {
+            boost = SHR32(EXTEND32(follower[i])*width/6,DB_SHIFT);
+            boost_bits = boost*6<<BITRES;
+         }
+         /* For CBR and non-transient CVBR frames, limit dynalloc to 1/4 of the bits */
+         if ((!st->vbr || (st->constrained_vbr&&!isTransient))
+               && (tot_boost+boost_bits)>>BITRES>>3 > effectiveBytes/4)
+         {
+            offsets[i] = 0;
+            break;
+         } else {
+            offsets[i] = boost;
+            tot_boost += boost_bits;
+         }
+      }
+   }
+   dynalloc_logp = 6;
+   total_bits<<=BITRES;
+   total_boost = 0;
+   tell = ec_tell_frac(enc);
+   for (i=st->start;i<st->end;i++)
+   {
+      int width, quanta;
+      int dynalloc_loop_logp;
+      int boost;
+      int j;
+      width = C*(eBands[i+1]-eBands[i])<<LM;
+      /* quanta is 6 bits, but no more than 1 bit/sample
+         and no less than 1/8 bit/sample */
+      quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width));
+      dynalloc_loop_logp = dynalloc_logp;
+      boost = 0;
+      for (j = 0; tell+(dynalloc_loop_logp<<BITRES) < total_bits-total_boost
+            && boost < cap[i]; j++)
+      {
+         int flag;
+         flag = j<offsets[i];
+         ec_enc_bit_logp(enc, flag, dynalloc_loop_logp);
+         tell = ec_tell_frac(enc);
+         if (!flag)
+            break;
+         boost += quanta;
+         total_boost += quanta;
+         dynalloc_loop_logp = 1;
+      }
+      /* Making dynalloc more likely */
+      if (j)
+         dynalloc_logp = IMAX(2, dynalloc_logp-1);
+      offsets[i] = boost;
+   }
+
+   if (C==2)
+   {
+      int effectiveRate;
+
+      static const opus_val16 intensity_thresholds[21]=
+      /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19  20  off*/
+        { 16,21,23,25,27,29,31,33,35,38,42,46,50,54,58,63,68,75,84,102,130};
+      static const opus_val16 intensity_histeresis[21]=
+        {  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 6,  8, 12};
+
+      /* Always use MS for 2.5 ms frames until we can do a better analysis */
+      if (LM!=0)
+         dual_stereo = stereo_analysis(mode, X, LM, N);
+
+      /* Account for coarse energy */
+      effectiveRate = (8*effectiveBytes - 80)>>LM;
+
+      /* effectiveRate in kb/s */
+      effectiveRate = 2*effectiveRate/5;
+
+      st->intensity = hysteresis_decision(effectiveRate, intensity_thresholds, intensity_histeresis, 21, st->intensity);
+      st->intensity = IMIN(st->end,IMAX(st->start, st->intensity));
+   }
+
+   alloc_trim = 5;
+   if (tell+(6<<BITRES) <= total_bits - total_boost)
+   {
+      alloc_trim = alloc_trim_analysis(mode, X, bandLogE,
+            st->end, LM, C, N, &st->analysis, &st->stereo_saving, tf_estimate, st->intensity);
+      ec_enc_icdf(enc, alloc_trim, trim_icdf, 7);
+      tell = ec_tell_frac(enc);
+   }
+
+   /* Variable bitrate */
+   if (vbr_rate>0)
+   {
+     opus_val16 alpha;
+     opus_int32 delta;
+     /* The target rate in 8th bits per frame */
+     opus_int32 target, base_target;
+     opus_int32 min_allowed;
+     int coded_bins;
+     int coded_bands;
+     int lm_diff = mode->maxLM - LM;
+     coded_bands = st->lastCodedBands ? st->lastCodedBands : nbEBands;
+     coded_bins = eBands[coded_bands]<<LM;
+     if (C==2)
+        coded_bins += eBands[IMIN(st->intensity, coded_bands)]<<LM;
+
+     /* Don't attempt to use more than 510 kb/s, even for frames smaller than 20 ms.
+        The CELT allocator will just not be able to use more than that anyway. */
+     nbCompressedBytes = IMIN(nbCompressedBytes,1275>>(3-LM));
+     target = vbr_rate - ((40*C+20)<<BITRES);
+     base_target = target;
+
+     if (st->constrained_vbr)
+        target += (st->vbr_offset>>lm_diff);
+
+     /*printf("%f %f %f %f %d %d ", st->analysis.activity, st->analysis.tonality, tf_estimate, st->stereo_saving, tot_boost, coded_bands);*/
+#ifndef FIXED_POINT
+     if (st->analysis.valid && st->analysis.activity<.4)
+        target -= (coded_bins<<BITRES)*1*(.4-st->analysis.activity);
+#endif
+     /* Stereo savings */
+     if (C==2)
+     {
+        int coded_stereo_bands;
+        int coded_stereo_dof;
+        coded_stereo_bands = IMIN(st->intensity, coded_bands);
+        coded_stereo_dof = (eBands[coded_stereo_bands]<<LM)-coded_stereo_bands;
+        /*printf("%d %d %d ", coded_stereo_dof, coded_bins, tot_boost);*/
+        target -= MIN32(target/3, SHR16(MULT16_16(st->stereo_saving,(coded_stereo_dof<<BITRES)),8));
+        target += MULT16_16_Q15(QCONST16(0.035,15),coded_stereo_dof<<BITRES);
+     }
+     /* Limits starving of other bands when using dynalloc */
+     target += tot_boost;
+     /* Compensates for the average transient boost */
+     target = MULT16_32_Q15(QCONST16(0.96f,15),target);
+     /* Apply transient boost */
+     target = SHL32(MULT16_32_Q15(tf_estimate, target),1);
+
+#ifndef FIXED_POINT
+     /* Apply tonality boost */
+     if (st->analysis.valid) {
+        int tonal_target;
+        float tonal;
+
+        /* Compensates for the average tonality boost */
+        target -= MULT16_16_Q15(QCONST16(0.13f,15),coded_bins<<BITRES);
+
+        tonal = MAX16(0,st->analysis.tonality-.2);
+        tonal_target = target + (coded_bins<<BITRES)*2.0f*tonal;
+        if (pitch_change)
+           tonal_target +=  (coded_bins<<BITRES)*.8;
+        /*printf("%f %f ", st->analysis.tonality, tonal);*/
+        target = IMAX(tonal_target,target);
+     }
+#endif
+
+     {
+        opus_int32 floor_depth;
+        int bins;
+        bins = eBands[nbEBands-2]<<LM;
+        /*floor_depth = SHR32(MULT16_16((C*bins<<BITRES),celt_log2(SHL32(MAX16(1,sample_max),13))), DB_SHIFT);*/
+        floor_depth = SHR32(MULT16_16((C*bins<<BITRES),maxDepth), DB_SHIFT);
+        floor_depth = IMAX(floor_depth, target>>2);
+        target = IMIN(target, floor_depth);
+        /*printf("%f %d\n", maxDepth, floor_depth);*/
+     }
+
+     if (st->constrained_vbr || st->bitrate<64000)
+     {
+        opus_val16 rate_factor;
+#ifdef FIXED_POINT
+        rate_factor = MAX16(0,(st->bitrate-32000));
+#else
+        rate_factor = MAX16(0,(1.f/32768)*(st->bitrate-32000));
+#endif
+        if (st->constrained_vbr)
+           rate_factor = MIN16(rate_factor, QCONST16(0.67f, 15));
+        target = base_target + MULT16_32_Q15(rate_factor, target-base_target);
+
+     }
+     /* Don't allow more than doubling the rate */
+     target = IMIN(2*base_target, target);
+
+     /* The current offset is removed from the target and the space used
+        so far is added*/
+     target=target+tell;
+     /* In VBR mode the frame size must not be reduced so much that it would
+         result in the encoder running out of bits.
+        The margin of 2 bytes ensures that none of the bust-prevention logic
+         in the decoder will have triggered so far. */
+     min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2 - nbFilledBytes;
+
+     nbAvailableBytes = (target+(1<<(BITRES+2)))>>(BITRES+3);
+     nbAvailableBytes = IMAX(min_allowed,nbAvailableBytes);
+     nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes) - nbFilledBytes;
+
+     /* By how much did we "miss" the target on that frame */
+     delta = target - vbr_rate;
+
+     target=nbAvailableBytes<<(BITRES+3);
+
+     /*If the frame is silent we don't adjust our drift, otherwise
+       the encoder will shoot to very high rates after hitting a
+       span of silence, but we do allow the bitres to refill.
+       This means that we'll undershoot our target in CVBR/VBR modes
+       on files with lots of silence. */
+     if(silence)
+     {
+       nbAvailableBytes = 2;
+       target = 2*8<<BITRES;
+       delta = 0;
+     }
+
+     if (st->vbr_count < 970)
+     {
+        st->vbr_count++;
+        alpha = celt_rcp(SHL32(EXTEND32(st->vbr_count+20),16));
+     } else
+        alpha = QCONST16(.001f,15);
+     /* How many bits have we used in excess of what we're allowed */
+     if (st->constrained_vbr)
+        st->vbr_reservoir += target - vbr_rate;
+     /*printf ("%d\n", st->vbr_reservoir);*/
+
+     /* Compute the offset we need to apply in order to reach the target */
+     if (st->constrained_vbr)
+     {
+        st->vbr_drift += (opus_int32)MULT16_32_Q15(alpha,(delta*(1<<lm_diff))-st->vbr_offset-st->vbr_drift);
+        st->vbr_offset = -st->vbr_drift;
+     }
+     /*printf ("%d\n", st->vbr_drift);*/
+
+     if (st->constrained_vbr && st->vbr_reservoir < 0)
+     {
+        /* We're under the min value -- increase rate */
+        int adjust = (-st->vbr_reservoir)/(8<<BITRES);
+        /* Unless we're just coding silence */
+        nbAvailableBytes += silence?0:adjust;
+        st->vbr_reservoir = 0;
+        /*printf ("+%d\n", adjust);*/
+     }
+     nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes);
+     /*printf("%d\n", nbCompressedBytes*50*8);*/
+     /* This moves the raw bits to take into account the new compressed size */
+     ec_enc_shrink(enc, nbCompressedBytes);
+   }
+
+   /* Bit allocation */
+   ALLOC(fine_quant, nbEBands, int);
+   ALLOC(pulses, nbEBands, int);
+   ALLOC(fine_priority, nbEBands, int);
+
+   /* bits =           packet size                    - where we are - safety*/
+   bits = (((opus_int32)nbCompressedBytes*8)<<BITRES) - ec_tell_frac(enc) - 1;
+   anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0;
+   bits -= anti_collapse_rsv;
+   codedBands = compute_allocation(mode, st->start, st->end, offsets, cap,
+         alloc_trim, &st->intensity, &dual_stereo, bits, &balance, pulses,
+         fine_quant, fine_priority, C, LM, enc, 1, st->lastCodedBands);
+   st->lastCodedBands = codedBands;
+
+   quant_fine_energy(mode, st->start, st->end, oldBandE, error, fine_quant, enc, C);
+
+#ifdef MEASURE_NORM_MSE
+   float X0[3000];
+   float bandE0[60];
+   c=0; do
+      for (i=0;i<N;i++)
+         X0[i+c*N] = X[i+c*N];
+   while (++c<C);
+   for (i=0;i<C*nbEBands;i++)
+      bandE0[i] = bandE[i];
+#endif
+
+   /* Residual quantisation */
+   ALLOC(collapse_masks, C*nbEBands, unsigned char);
+   quant_all_bands(1, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks,
+         bandE, pulses, shortBlocks, st->spread_decision, dual_stereo, st->intensity, tf_res,
+         nbCompressedBytes*(8<<BITRES)-anti_collapse_rsv, balance, enc, LM, codedBands, &st->rng);
+
+   if (anti_collapse_rsv > 0)
+   {
+      anti_collapse_on = st->consec_transient<2;
+#ifdef FUZZING
+      anti_collapse_on = rand()&0x1;
+#endif
+      ec_enc_bits(enc, anti_collapse_on, 1);
+   }
+   quant_energy_finalise(mode, st->start, st->end, oldBandE, error, fine_quant, fine_priority, nbCompressedBytes*8-ec_tell(enc), enc, C);
+
+   if (silence)
+   {
+      for (i=0;i<C*nbEBands;i++)
+         oldBandE[i] = -QCONST16(28.f,DB_SHIFT);
+   }
+
+#ifdef RESYNTH
+   /* Re-synthesis of the coded audio if required */
+   {
+      celt_sig *out_mem[2];
+
+      log2Amp(mode, st->start, st->end, bandE, oldBandE, C);
+      if (silence)
+      {
+         for (i=0;i<C*nbEBands;i++)
+            bandE[i] = 0;
+      }
+
+#ifdef MEASURE_NORM_MSE
+      measure_norm_mse(mode, X, X0, bandE, bandE0, M, N, C);
+#endif
+      if (anti_collapse_on)
+      {
+         anti_collapse(mode, X, collapse_masks, LM, C, N,
+               st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng);
+      }
+
+      /* Synthesis */
+      denormalise_bands(mode, X, freq, bandE, st->start, effEnd, C, M);
+
+      c=0; do {
+         OPUS_MOVE(st->syn_mem[c], st->syn_mem[c]+N, 2*MAX_PERIOD-N+overlap);
+      } while (++c<CC);
+
+      if (CC==2&&C==1)
+      {
+         for (i=0;i<N;i++)
+            freq[N+i] = freq[i];
+      }
+
+      c=0; do {
+         out_mem[c] = st->syn_mem[c]+2*MAX_PERIOD-N;
+      } while (++c<CC);
+
+      compute_inv_mdcts(mode, shortBlocks, freq, out_mem, CC, LM);
+
+      c=0; do {
+         st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD);
+         st->prefilter_period_old=IMAX(st->prefilter_period_old, COMBFILTER_MINPERIOD);
+         comb_filter(out_mem[c], out_mem[c], st->prefilter_period_old, st->prefilter_period, mode->shortMdctSize,
+               st->prefilter_gain_old, st->prefilter_gain, st->prefilter_tapset_old, st->prefilter_tapset,
+               mode->window, st->overlap);
+         if (LM!=0)
+            comb_filter(out_mem[c]+mode->shortMdctSize, out_mem[c]+mode->shortMdctSize, st->prefilter_period, pitch_index, N-mode->shortMdctSize,
+                  st->prefilter_gain, gain1, st->prefilter_tapset, prefilter_tapset,
+                  mode->window, overlap);
+      } while (++c<CC);
+
+      /* We reuse freq[] as scratch space for the de-emphasis */
+      deemphasis(out_mem, (opus_val16*)pcm, N, CC, st->upsample, mode->preemph, st->preemph_memD, freq);
+      st->prefilter_period_old = st->prefilter_period;
+      st->prefilter_gain_old = st->prefilter_gain;
+      st->prefilter_tapset_old = st->prefilter_tapset;
+   }
+#endif
+
+   st->prefilter_period = pitch_index;
+   st->prefilter_gain = gain1;
+   st->prefilter_tapset = prefilter_tapset;
+#ifdef RESYNTH
+   if (LM!=0)
+   {
+      st->prefilter_period_old = st->prefilter_period;
+      st->prefilter_gain_old = st->prefilter_gain;
+      st->prefilter_tapset_old = st->prefilter_tapset;
+   }
+#endif
+
+   if (CC==2&&C==1) {
+      for (i=0;i<nbEBands;i++)
+         oldBandE[nbEBands+i]=oldBandE[i];
+   }
+
+   if (!isTransient)
+   {
+      for (i=0;i<CC*nbEBands;i++)
+         oldLogE2[i] = oldLogE[i];
+      for (i=0;i<CC*nbEBands;i++)
+         oldLogE[i] = oldBandE[i];
+   } else {
+      for (i=0;i<CC*nbEBands;i++)
+         oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]);
+   }
+   /* In case start or end were to change */
+   c=0; do
+   {
+      for (i=0;i<st->start;i++)
+      {
+         oldBandE[c*nbEBands+i]=0;
+         oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
+      }
+      for (i=st->end;i<nbEBands;i++)
+      {
+         oldBandE[c*nbEBands+i]=0;
+         oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
+      }
+   } while (++c<CC);
+
+   if (isTransient)
+      st->consec_transient++;
+   else
+      st->consec_transient=0;
+   st->rng = enc->rng;
+
+   /* If there's any room left (can only happen for very high rates),
+      it's already filled with zeros */
+   ec_enc_done(enc);
+
+#ifdef CUSTOM_MODES
+   if (st->signalling)
+      nbCompressedBytes++;
+#endif
+
+   RESTORE_STACK;
+   if (ec_get_error(enc))
+      return OPUS_INTERNAL_ERROR;
+   else
+      return nbCompressedBytes;
+}
+
+
+#ifdef CUSTOM_MODES
+
+#ifdef FIXED_POINT
+int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
+{
+   return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL);
+}
+
+#ifndef DISABLE_FLOAT_API
+int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
+{
+   int j, ret, C, N;
+   VARDECL(opus_int16, in);
+   ALLOC_STACK;
+
+   if (pcm==NULL)
+      return OPUS_BAD_ARG;
+
+   C = st->channels;
+   N = frame_size;
+   ALLOC(in, C*N, opus_int16);
+
+   for (j=0;j<C*N;j++)
+     in[j] = FLOAT2INT16(pcm[j]);
+
+   ret=celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL);
+#ifdef RESYNTH
+   for (j=0;j<C*N;j++)
+      ((float*)pcm)[j]=in[j]*(1.f/32768.f);
+#endif
+   RESTORE_STACK;
+   return ret;
+}
+#endif /* DISABLE_FLOAT_API */
+#else
+
+int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
+{
+   int j, ret, C, N;
+   VARDECL(celt_sig, in);
+   ALLOC_STACK;
+
+   if (pcm==NULL)
+      return OPUS_BAD_ARG;
+
+   C=st->channels;
+   N=frame_size;
+   ALLOC(in, C*N, celt_sig);
+   for (j=0;j<C*N;j++) {
+     in[j] = SCALEOUT(pcm[j]);
+   }
+
+   ret = celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL);
+#ifdef RESYNTH
+   for (j=0;j<C*N;j++)
+      ((opus_int16*)pcm)[j] = FLOAT2INT16(in[j]);
+#endif
+   RESTORE_STACK;
+   return ret;
+}
+
+int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
+{
+   return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL);
+}
+
+#endif
+
+#endif /* CUSTOM_MODES */
+
+int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...)
+{
+   va_list ap;
+
+   va_start(ap, request);
+   switch (request)
+   {
+      case OPUS_SET_COMPLEXITY_REQUEST:
+      {
+         int value = va_arg(ap, opus_int32);
+         if (value<0 || value>10)
+            goto bad_arg;
+         st->complexity = value;
+      }
+      break;
+      case CELT_SET_START_BAND_REQUEST:
+      {
+         opus_int32 value = va_arg(ap, opus_int32);
+         if (value<0 || value>=st->mode->nbEBands)
+            goto bad_arg;
+         st->start = value;
+      }
+      break;
+      case CELT_SET_END_BAND_REQUEST:
+      {
+         opus_int32 value = va_arg(ap, opus_int32);
+         if (value<1 || value>st->mode->nbEBands)
+            goto bad_arg;
+         st->end = value;
+      }
+      break;
+      case CELT_SET_PREDICTION_REQUEST:
+      {
+         int value = va_arg(ap, opus_int32);
+         if (value<0 || value>2)
+            goto bad_arg;
+         st->disable_pf = value<=1;
+         st->force_intra = value==0;
+      }
+      break;
+      case OPUS_SET_PACKET_LOSS_PERC_REQUEST:
+      {
+         int value = va_arg(ap, opus_int32);
+         if (value<0 || value>100)
+            goto bad_arg;
+         st->loss_rate = value;
+      }
+      break;
+      case OPUS_SET_VBR_CONSTRAINT_REQUEST:
+      {
+         opus_int32 value = va_arg(ap, opus_int32);
+         st->constrained_vbr = value;
+      }
+      break;
+      case OPUS_SET_VBR_REQUEST:
+      {
+         opus_int32 value = va_arg(ap, opus_int32);
+         st->vbr = value;
+      }
+      break;
+      case OPUS_SET_BITRATE_REQUEST:
+      {
+         opus_int32 value = va_arg(ap, opus_int32);
+         if (value<=500 && value!=OPUS_BITRATE_MAX)
+            goto bad_arg;
+         value = IMIN(value, 260000*st->channels);
+         st->bitrate = value;
+      }
+      break;
+      case CELT_SET_CHANNELS_REQUEST:
+      {
+         opus_int32 value = va_arg(ap, opus_int32);
+         if (value<1 || value>2)
+            goto bad_arg;
+         st->stream_channels = value;
+      }
+      break;
+      case OPUS_SET_LSB_DEPTH_REQUEST:
+      {
+          opus_int32 value = va_arg(ap, opus_int32);
+          if (value<8 || value>24)
+             goto bad_arg;
+          st->lsb_depth=value;
+      }
+      break;
+      case OPUS_GET_LSB_DEPTH_REQUEST:
+      {
+          opus_int32 *value = va_arg(ap, opus_int32*);
+          *value=st->lsb_depth;
+      }
+      break;
+      case OPUS_RESET_STATE:
+      {
+         int i;
+         opus_val16 *oldBandE, *oldLogE, *oldLogE2;
+         oldBandE = (opus_val16*)(st->in_mem+st->channels*(st->overlap+COMBFILTER_MAXPERIOD));
+         oldLogE = oldBandE + st->channels*st->mode->nbEBands;
+         oldLogE2 = oldLogE + st->channels*st->mode->nbEBands;
+         OPUS_CLEAR((char*)&st->ENCODER_RESET_START,
+               opus_custom_encoder_get_size(st->mode, st->channels)-
+               ((char*)&st->ENCODER_RESET_START - (char*)st));
+         for (i=0;i<st->channels*st->mode->nbEBands;i++)
+            oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT);
+         st->vbr_offset = 0;
+         st->delayedIntra = 1;
+         st->spread_decision = SPREAD_NORMAL;
+         st->tonal_average = 256;
+         st->hf_average = 0;
+         st->tapset_decision = 0;
+      }
+      break;
+#ifdef CUSTOM_MODES
+      case CELT_SET_INPUT_CLIPPING_REQUEST:
+      {
+         opus_int32 value = va_arg(ap, opus_int32);
+         st->clip = value;
+      }
+      break;
+#endif
+      case CELT_SET_SIGNALLING_REQUEST:
+      {
+         opus_int32 value = va_arg(ap, opus_int32);
+         st->signalling = value;
+      }
+      break;
+      case CELT_SET_ANALYSIS_REQUEST:
+      {
+         AnalysisInfo *info = va_arg(ap, AnalysisInfo *);
+         if (info)
+            OPUS_COPY(&st->analysis, info, 1);
+      }
+      break;
+      case CELT_GET_MODE_REQUEST:
+      {
+         const CELTMode ** value = va_arg(ap, const CELTMode**);
+         if (value==0)
+            goto bad_arg;
+         *value=st->mode;
+      }
+      break;
+      case OPUS_GET_FINAL_RANGE_REQUEST:
+      {
+         opus_uint32 * value = va_arg(ap, opus_uint32 *);
+         if (value==0)
+            goto bad_arg;
+         *value=st->rng;
+      }
+      break;
+      default:
+         goto bad_request;
+   }
+   va_end(ap);
+   return OPUS_OK;
+bad_arg:
+   va_end(ap);
+   return OPUS_BAD_ARG;
+bad_request:
+   va_end(ap);
+   return OPUS_UNIMPLEMENTED;
+}
index 6f0a90e..2a8e9f0 100644 (file)
@@ -1,5 +1,7 @@
 CELT_SOURCES = celt/bands.c \
 celt/celt.c \
+celt/celt_encoder.c \
+celt/celt_decoder.c \
 celt/cwrs.c \
 celt/entcode.c \
 celt/entdec.c \
index e7861d6..8415a7b 100644 (file)
@@ -42,15 +42,15 @@ extern "C" {
 #endif
 
 #ifdef CUSTOM_MODES
-#define OPUS_CUSTOM_EXPORT OPUS_EXPORT
-#define OPUS_CUSTOM_EXPORT_STATIC OPUS_EXPORT
+# define OPUS_CUSTOM_EXPORT OPUS_EXPORT
+# define OPUS_CUSTOM_EXPORT_STATIC OPUS_EXPORT
 #else
-#define OPUS_CUSTOM_EXPORT
-#ifdef CELT_C
-#define OPUS_CUSTOM_EXPORT_STATIC static inline
-#else
-#define OPUS_CUSTOM_EXPORT_STATIC
-#endif
+# define OPUS_CUSTOM_EXPORT
+# ifdef CELT_C
+#  define OPUS_CUSTOM_EXPORT_STATIC static inline
+# else
+#  define OPUS_CUSTOM_EXPORT_STATIC
+# endif
 #endif
 
 /** @defgroup opus_custom Opus Custom
@@ -126,6 +126,9 @@ OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT OpusCustomMode *opus_custom_mode_crea
   */
 OPUS_CUSTOM_EXPORT void opus_custom_mode_destroy(OpusCustomMode *mode);
 
+
+#if defined(CELT_C) && defined(ENCODER)
+
 /* Encoder */
 /** Gets the size of an OpusCustomEncoder structure.
   * @param [in] mode <tt>OpusCustomMode *</tt>: Mode configuration
@@ -137,21 +140,6 @@ OPUS_CUSTOM_EXPORT_STATIC OPUS_WARN_UNUSED_RESULT int opus_custom_encoder_get_si
     int channels
 ) OPUS_ARG_NONNULL(1);
 
-/** Creates a new encoder state. Each stream needs its own encoder
-  * state (can't be shared across simultaneous streams).
-  * @param [in] mode <tt>OpusCustomMode*</tt>: Contains all the information about the characteristics of
-  *  the stream (must be the same characteristics as used for the
-  *  decoder)
-  * @param [in] channels <tt>int</tt>: Number of channels
-  * @param [out] error <tt>int*</tt>: Returns an error code
-  * @return Newly created encoder state.
-*/
-OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT OpusCustomEncoder *opus_custom_encoder_create(
-    const OpusCustomMode *mode,
-    int channels,
-    int *error
-) OPUS_ARG_NONNULL(1);
-
 /** Initializes a previously allocated encoder state
   * The memory pointed to by st must be the size returned by opus_custom_encoder_get_size.
   * This is intended for applications which use their own allocator instead of malloc.
@@ -170,6 +158,25 @@ OPUS_CUSTOM_EXPORT_STATIC int opus_custom_encoder_init(
     int channels
 ) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2);
 
+#endif
+
+
+/** Creates a new encoder state. Each stream needs its own encoder
+  * state (can't be shared across simultaneous streams).
+  * @param [in] mode <tt>OpusCustomMode*</tt>: Contains all the information about the characteristics of
+  *  the stream (must be the same characteristics as used for the
+  *  decoder)
+  * @param [in] channels <tt>int</tt>: Number of channels
+  * @param [out] error <tt>int*</tt>: Returns an error code
+  * @return Newly created encoder state.
+*/
+OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT OpusCustomEncoder *opus_custom_encoder_create(
+    const OpusCustomMode *mode,
+    int channels,
+    int *error
+) OPUS_ARG_NONNULL(1);
+
+
 /** Destroys a an encoder state.
   * @param[in] st <tt>OpusCustomEncoder*</tt>: State to be freed.
   */
@@ -229,6 +236,8 @@ OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT int opus_custom_encode(
   */
 OPUS_CUSTOM_EXPORT int opus_custom_encoder_ctl(OpusCustomEncoder * OPUS_RESTRICT st, int request, ...) OPUS_ARG_NONNULL(1);
 
+
+#if defined(CELT_C) && defined(DECODER)
 /* Decoder */
 
 /** Gets the size of an OpusCustomDecoder structure.
@@ -241,20 +250,6 @@ OPUS_CUSTOM_EXPORT_STATIC OPUS_WARN_UNUSED_RESULT int opus_custom_decoder_get_si
     int channels
 ) OPUS_ARG_NONNULL(1);
 
-/** Creates a new decoder state. Each stream needs its own decoder state (can't
-  * be shared across simultaneous streams).
-  * @param [in] mode <tt>OpusCustomMode</tt>: Contains all the information about the characteristics of the
-  *          stream (must be the same characteristics as used for the encoder)
-  * @param [in] channels <tt>int</tt>: Number of channels
-  * @param [out] error <tt>int*</tt>: Returns an error code
-  * @return Newly created decoder state.
-  */
-OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT OpusCustomDecoder *opus_custom_decoder_create(
-    const OpusCustomMode *mode,
-    int channels,
-    int *error
-) OPUS_ARG_NONNULL(1);
-
 /** Initializes a previously allocated decoder state
   * The memory pointed to by st must be the size returned by opus_custom_decoder_get_size.
   * This is intended for applications which use their own allocator instead of malloc.
@@ -273,6 +268,23 @@ OPUS_CUSTOM_EXPORT_STATIC int opus_custom_decoder_init(
     int channels
 ) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2);
 
+#endif
+
+
+/** Creates a new decoder state. Each stream needs its own decoder state (can't
+  * be shared across simultaneous streams).
+  * @param [in] mode <tt>OpusCustomMode</tt>: Contains all the information about the characteristics of the
+  *          stream (must be the same characteristics as used for the encoder)
+  * @param [in] channels <tt>int</tt>: Number of channels
+  * @param [out] error <tt>int*</tt>: Returns an error code
+  * @return Newly created decoder state.
+  */
+OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT OpusCustomDecoder *opus_custom_decoder_create(
+    const OpusCustomMode *mode,
+    int channels,
+    int *error
+) OPUS_ARG_NONNULL(1);
+
 /** Destroys a an decoder state.
   * @param[in] st <tt>OpusCustomDecoder*</tt>: State to be freed.
   */