#ifdef FIXED_POINT
/* Compute the amplitude (sqrt energy) in each of the bands */
-void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bank, int _C)
+void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bank, int _C, int M)
{
int i, c, N;
const celt_int16 *eBands = m->eBands;
celt_word32 maxval=0;
celt_word32 sum = 0;
- j=eBands[i]; do {
+ j=M*eBands[i]; do {
maxval = MAX32(maxval, X[j+c*N]);
maxval = MAX32(maxval, -X[j+c*N]);
- } while (++j<eBands[i+1]);
+ } while (++j<M*eBands[i+1]);
if (maxval > 0)
{
int shift = celt_ilog2(maxval)-10;
- j=eBands[i]; do {
+ j=M*eBands[i]; do {
sum = MAC16_16(sum, EXTRACT16(VSHR32(X[j+c*N],shift)),
EXTRACT16(VSHR32(X[j+c*N],shift)));
- } while (++j<eBands[i+1]);
+ } while (++j<M*eBands[i+1]);
/* We're adding one here to make damn sure we never end up with a pitch vector that's
larger than unity norm */
bank[i+c*m->nbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift);
}
/* Normalise each band such that the energy is one. */
-void normalise_bands(const CELTMode *m, const celt_sig * restrict freq, celt_norm * restrict X, const celt_ener *bank, int _C)
+void normalise_bands(const CELTMode *m, const celt_sig * restrict freq, celt_norm * restrict X, const celt_ener *bank, int _C, int M)
{
int i, c, N;
const celt_int16 *eBands = m->eBands;
shift = celt_zlog2(bank[i+c*m->nbEBands])-13;
E = VSHR32(bank[i+c*m->nbEBands], shift);
g = EXTRACT16(celt_rcp(SHL32(E,3)));
- j=eBands[i]; do {
+ j=M*eBands[i]; do {
X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g);
- } while (++j<eBands[i+1]);
+ } while (++j<M*eBands[i+1]);
} while (++i<m->nbEBands);
}
}
#else /* FIXED_POINT */
/* Compute the amplitude (sqrt energy) in each of the bands */
-void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bank, int _C)
+void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bank, int _C, int M)
{
int i, c, N;
const celt_int16 *eBands = m->eBands;
{
int j;
celt_word32 sum = 1e-10;
- for (j=eBands[i];j<eBands[i+1];j++)
+ for (j=M*eBands[i];j<M*eBands[i+1];j++)
sum += X[j+c*N]*X[j+c*N];
bank[i+c*m->nbEBands] = sqrt(sum);
/*printf ("%f ", bank[i+c*m->nbEBands]);*/
}
#ifdef EXP_PSY
-void compute_noise_energies(const CELTMode *m, const celt_sig *X, const celt_word16 *tonality, celt_ener *bank, int _C)
+void compute_noise_energies(const CELTMode *m, const celt_sig *X, const celt_word16 *tonality, celt_ener *bank, int _C, int M)
{
int i, c, N;
const celt_int16 *eBands = m->eBands;
{
int j;
celt_word32 sum = 1e-10;
- for (j=eBands[i];j<eBands[i+1];j++)
+ for (j=M*eBands[i];j<M*eBands[i+1];j++)
sum += X[j*C+c]*X[j+c*N]*tonality[j];
bank[i+c*m->nbEBands] = sqrt(sum);
/*printf ("%f ", bank[i+c*m->nbEBands]);*/
#endif
/* Normalise each band such that the energy is one. */
-void normalise_bands(const CELTMode *m, const celt_sig * restrict freq, celt_norm * restrict X, const celt_ener *bank, int _C)
+void normalise_bands(const CELTMode *m, const celt_sig * restrict freq, celt_norm * restrict X, const celt_ener *bank, int _C, int M)
{
int i, c, N;
const celt_int16 *eBands = m->eBands;
for (i=0;i<m->nbEBands;i++)
{
int j;
- celt_word16 g = 1.f/(1e-10+bank[i+c*m->nbEBands]);
- for (j=eBands[i];j<eBands[i+1];j++)
+ celt_word16 g = 1.f/(1e-10f+bank[i+c*m->nbEBands]);
+ for (j=M*eBands[i];j<M*eBands[i+1];j++)
X[j+c*N] = freq[j+c*N]*g;
}
}
#endif /* FIXED_POINT */
-void renormalise_bands(const CELTMode *m, celt_norm * restrict X, int _C)
+void renormalise_bands(const CELTMode *m, celt_norm * restrict X, int _C, int M)
{
int i, c;
const celt_int16 *eBands = m->eBands;
for (c=0;c<C;c++)
{
i=0; do {
- renormalise_vector(X+eBands[i]+c*m->eBands[m->nbEBands+1], Q15ONE, eBands[i+1]-eBands[i], 1);
+ renormalise_vector(X+M*eBands[i]+c*M*eBands[m->nbEBands+1], Q15ONE, M*eBands[i+1]-M*eBands[i], 1);
} while (++i<m->nbEBands);
}
}
/* De-normalise the energy to produce the synthesis from the unit-energy bands */
-void denormalise_bands(const CELTMode *m, const celt_norm * restrict X, celt_sig * restrict freq, const celt_ener *bank, int _C)
+void denormalise_bands(const CELTMode *m, const celt_norm * restrict X, celt_sig * restrict freq, const celt_ener *bank, int _C, int M)
{
int i, c, N;
const celt_int16 *eBands = m->eBands;
celt_fatal("denormalise_bands() not implemented for >2 channels");
for (c=0;c<C;c++)
{
+ celt_sig * restrict f;
+ const celt_norm * restrict x;
+ f = freq+c*N;
+ x = X+c*N;
for (i=0;i<m->nbEBands;i++)
{
- int j;
+ int j, end;
celt_word32 g = SHR32(bank[i+c*m->nbEBands],1);
- j=eBands[i]; do {
- freq[j+c*N] = SHL32(MULT16_32_Q15(X[j+c*N], g),2);
- } while (++j<eBands[i+1]);
+ j=M*eBands[i];
+ end = M*eBands[i+1];
+ do {
+ *f++ = SHL32(MULT16_32_Q15(*x, g),2);
+ x++;
+ } while (++j<end);
}
- for (i=eBands[m->nbEBands];i<eBands[m->nbEBands+1];i++)
- freq[i+c*N] = 0;
+ for (i=M*eBands[m->nbEBands];i<M*eBands[m->nbEBands+1];i++)
+ *f++ = 0;
}
}
{
celt_word32 num, den;
celt_word16 fact;
- fact = MULT16_16(QCONST16(.04, 14), norm_rate);
- if (fact < QCONST16(1., 14))
- fact = QCONST16(1., 14);
+ fact = MULT16_16(QCONST16(.04f, 14), norm_rate);
+ if (fact < QCONST16(1.f, 14))
+ fact = QCONST16(1.f, 14);
num = Sxy;
- den = EPSILON+Sxx+MULT16_32_Q15(QCONST16(.03,15),Syy);
+ den = EPSILON+Sxx+MULT16_32_Q15(QCONST16(.03f,15),Syy);
shift = celt_zlog2(Sxy)-16;
if (shift < 0)
shift = 0;
g = DIV32(SHL32(SHR32(num,shift),14),ADD32(EPSILON,SHR32(den,shift)));
/* This MUST round down so that we don't over-estimate the gain */
- *gain_id = EXTRACT16(SHR32(MULT16_16(20,(g-QCONST16(.5,14))),14));
+ *gain_id = EXTRACT16(SHR32(MULT16_16(20,(g-QCONST16(.5f,14))),14));
}
#else
{
- float fact = .04*norm_rate;
+ float fact = .04f*norm_rate;
if (fact < 1)
fact = 1;
- g = Sxy/(.1+Sxx+.03*Syy);
- if (Sxy < .5*fact*celt_sqrt(1+Sxx*Syy))
+ g = Sxy/(.1f+Sxx+.03f*Syy);
+ if (Sxy < .5f*fact*celt_sqrt(1+Sxx*Syy))
g = 0;
/* This MUST round down so that we don't over-estimate the gain */
- *gain_id = floor(20*(g-.5));
+ *gain_id = floor(20*(g-.5f));
}
#endif
/* This prevents the pitch gain from being above 1.0 for too long by bounding the
maximum error amplification factor to 2.0 */
- g = ADD16(QCONST16(.5,14), MULT16_16_16(QCONST16(.05,14),*gain_id));
- *gain_prod = MAX16(QCONST32(1., 13), MULT16_16_Q14(*gain_prod,g));
- if (*gain_prod>QCONST32(2., 13))
+ g = ADD16(QCONST16(.5f,14), MULT16_16_16(QCONST16(.05f,14),*gain_id));
+ *gain_prod = MAX16(QCONST32(1.f, 13), MULT16_16_Q14(*gain_prod,g));
+ if (*gain_prod>QCONST32(2.f, 13))
{
*gain_id=9;
- *gain_prod = QCONST32(2., 13);
+ *gain_prod = QCONST32(2.f, 13);
}
if (*gain_id < 0)
int len = m->pitchEnd;
N = FRAMESIZE(m);
- gain = ADD16(QCONST16(.5,14), MULT16_16_16(QCONST16(.05,14),gain_id));
+ gain = ADD16(QCONST16(.5f,14), MULT16_16_16(QCONST16(.05f,14),gain_id));
delta = PDIV32_16(gain, len);
if (pred)
gain = -gain;
#ifndef DISABLE_STEREO
-static void stereo_band_mix(const CELTMode *m, celt_norm *X, celt_norm *Y, const celt_ener *bank, int stereo_mode, int bandID, int dir)
+static void stereo_band_mix(const CELTMode *m, celt_norm *X, celt_norm *Y, const celt_ener *bank, int stereo_mode, int bandID, int dir, int M)
{
int i = bandID;
const celt_int16 *eBands = m->eBands;
a1 = DIV32_16(SHL32(EXTEND32(left),14),norm);
a2 = dir*DIV32_16(SHL32(EXTEND32(right),14),norm);
}
- for (j=0;j<eBands[i+1]-eBands[i];j++)
+ for (j=0;j<M*eBands[i+1]-M*eBands[i];j++)
{
celt_norm r, l;
l = X[j];
#endif /* DISABLE_STEREO */
-int folding_decision(const CELTMode *m, celt_norm *X, celt_word16 *average, int *last_decision, int _C)
+int folding_decision(const CELTMode *m, celt_norm *X, celt_word16 *average, int *last_decision, int _C, int M)
{
int i, c, N0;
int NR=0;
int max_i=0;
celt_word16 max_val=EPSILON;
celt_word32 floor_ener=EPSILON;
- celt_norm * restrict x = X+eBands[i]+c*N0;
- N = eBands[i+1]-eBands[i];
+ celt_norm * restrict x = X+M*eBands[i]+c*N0;
+ N = M*eBands[i+1]-M*eBands[i];
for (j=0;j<N;j++)
{
if (ABS16(x[j])>max_val)
{
celt_word16 r;
celt_word16 den = celt_sqrt(floor_ener);
- den = MAX32(QCONST16(.02, 15), den);
+ den = MAX32(QCONST16(.02f, 15), den);
r = DIV32_16(SHL32(EXTEND32(max_val),8),den);
ratio = ADD32(ratio, EXTEND32(r));
NR++;
ratio = ADD32(HALF32(ratio), HALF32(*average));
if (!*last_decision)
{
- *last_decision = (ratio < QCONST16(1.8,8));
+ *last_decision = (ratio < QCONST16(1.8f,8));
} else {
- *last_decision = (ratio < QCONST16(3.,8));
+ *last_decision = (ratio < QCONST16(3.f,8));
}
*average = EXTRACT16(ratio);
return *last_decision;
}
/* Quantisation of the residual */
-void quant_bands(const CELTMode *m, celt_norm * restrict X, const celt_ener *bandE, int *pulses, int shortBlocks, int fold, int total_bits, int encode, void *enc_dec)
+void quant_bands(const CELTMode *m, int start, celt_norm * restrict X, const celt_ener *bandE, int *pulses, int shortBlocks, int fold, int resynth, int total_bits, int encode, void *enc_dec, int M)
{
int i, j, remaining_bits, balance;
const celt_int16 * restrict eBands = m->eBands;
SAVE_STACK;
B = shortBlocks ? m->nbShortMdcts : 1;
- ALLOC(_norm, eBands[m->nbEBands+1], celt_norm);
+ ALLOC(_norm, M*eBands[m->nbEBands+1], celt_norm);
norm = _norm;
balance = 0;
- for (i=0;i<m->nbEBands;i++)
+ for (i=start;i<m->nbEBands;i++)
{
int tell;
int N;
int q;
- celt_word16 n;
const celt_int16 * const *BPbits;
int curr_balance, curr_bits;
- N = eBands[i+1]-eBands[i];
+ N = M*eBands[i+1]-M*eBands[i];
BPbits = m->bits;
if (encode)
tell = ec_enc_tell(enc_dec, BITRES);
else
tell = ec_dec_tell(enc_dec, BITRES);
- if (i != 0)
+ if (i != start)
balance -= tell;
remaining_bits = (total_bits<<BITRES)-tell-1;
curr_balance = (m->nbEBands-i);
}
balance += pulses[i] + tell;
- n = SHL16(celt_sqrt(eBands[i+1]-eBands[i]),11);
if (q > 0)
{
int spread = fold ? B : 0;
if (encode)
- alg_quant(X+eBands[i], eBands[i+1]-eBands[i], q, spread, enc_dec);
+ alg_quant(X+M*eBands[i], N, q, spread, resynth, enc_dec);
else
- alg_unquant(X+eBands[i], eBands[i+1]-eBands[i], q, spread, enc_dec);
+ alg_unquant(X+M*eBands[i], N, q, spread, enc_dec);
} else {
- intra_fold(m, eBands[i+1]-eBands[i], norm, X+eBands[i], eBands[i], B);
+ if (resynth)
+ intra_fold(m, start, N, norm, X+M*eBands[i], M*eBands[i], B, M);
+ }
+ if (resynth)
+ {
+ celt_word16 n;
+ n = celt_sqrt(SHL32(EXTEND32(N),22));
+ for (j=M*eBands[i];j<M*eBands[i+1];j++)
+ norm[j] = MULT16_16_Q15(n,X[j]);
}
- for (j=eBands[i];j<eBands[i+1];j++)
- norm[j] = MULT16_16_Q15(n,X[j]);
}
RESTORE_STACK;
}
#ifndef DISABLE_STEREO
-void quant_bands_stereo(const CELTMode *m, celt_norm *_X, const celt_ener *bandE, int *pulses, int shortBlocks, int fold, int total_bits, ec_enc *enc)
+void quant_bands_stereo(const CELTMode *m, int start, celt_norm *_X, const celt_ener *bandE, int *pulses, int shortBlocks, int fold, int resynth, int total_bits, ec_enc *enc, int M)
{
int i, j, remaining_bits, balance;
const celt_int16 * restrict eBands = m->eBands;
SAVE_STACK;
B = shortBlocks ? m->nbShortMdcts : 1;
- ALLOC(_norm, eBands[m->nbEBands+1], celt_norm);
+ ALLOC(_norm, M*eBands[m->nbEBands+1], celt_norm);
norm = _norm;
balance = 0;
- for (i=0;i<m->nbEBands;i++)
+ for (i=start;i<m->nbEBands;i++)
{
int tell;
int q1, q2;
- celt_word16 n;
const celt_int16 * const *BPbits;
int b, qb;
int N;
int qalloc;
celt_norm * restrict X, * restrict Y;
- X = _X+eBands[i];
- Y = X+eBands[m->nbEBands+1];
+ X = _X+M*eBands[i];
+ Y = X+M*eBands[m->nbEBands+1];
BPbits = m->bits;
- N = eBands[i+1]-eBands[i];
+ N = M*eBands[i+1]-M*eBands[i];
tell = ec_enc_tell(enc, BITRES);
- if (i != 0)
+ if (i != start)
balance -= tell;
remaining_bits = (total_bits<<BITRES)-tell-1;
curr_balance = (m->nbEBands-i);
if (qb>14)
qb = 14;
- stereo_band_mix(m, X, Y, bandE, qb==0, i, 1);
+ stereo_band_mix(m, X, Y, bandE, qb==0, i, 1, M);
mid = renormalise_vector(X, Q15ONE, N, 1);
side = renormalise_vector(Y, Q15ONE, N, 1);
#ifdef FIXED_POINT
- itheta = MULT16_16_Q15(QCONST16(0.63662,15),celt_atan2p(side, mid));
+ itheta = MULT16_16_Q15(QCONST16(0.63662f,15),celt_atan2p(side, mid));
#else
- itheta = floor(.5+16384*0.63662*atan2(side,mid));
+ itheta = floor(.5f+16384*0.63662f*atan2(side,mid));
#endif
qalloc = log2_frac((1<<qb)+1,BITRES);
if (qb==0)
iside = bitexact_cos(16384-itheta);
delta = (N-1)*(log2_frac(iside,BITRES+2)-log2_frac(imid,BITRES+2))>>2;
}
- n = SHL16(celt_sqrt((eBands[i+1]-eBands[i])),11);
-#if 0
+#if 1
if (N==2)
{
- int c2;
+ int c, c2;
int sign=1;
celt_norm v[2], w[2];
celt_norm *x2, *y2;
if (q1 > 0)
{
int spread = fold ? B : 0;
- alg_quant(v, N, q1, spread, enc);
+ alg_quant(v, N, q1, spread, resynth, enc);
} else {
v[0] = QCONST16(1.f, 14);
v[1] = 0;
if (q1 > 0) {
int spread = fold ? B : 0;
- alg_quant(X, N, q1, spread, enc);
+ alg_quant(X, N, q1, spread, resynth, enc);
} else {
- intra_fold(m, eBands[i+1]-eBands[i], norm, X, eBands[i], B);
+ if (resynth)
+ intra_fold(m, start, N, norm, X, M*eBands[i], B, M);
}
if (q2 > 0) {
int spread = fold ? B : 0;
- alg_quant(Y, N, q2, spread, enc);
+ alg_quant(Y, N, q2, spread, resynth, enc);
} else
for (j=0;j<N;j++)
Y[j] = 0;
balance += pulses[i] + tell;
+ if (resynth)
+ {
+ celt_word16 n;
#ifdef FIXED_POINT
- mid = imid;
- side = iside;
+ mid = imid;
+ side = iside;
#else
- mid = (1./32768)*imid;
- side = (1./32768)*iside;
+ mid = (1.f/32768)*imid;
+ side = (1.f/32768)*iside;
#endif
- for (j=0;j<N;j++)
- norm[eBands[i]+j] = MULT16_16_Q15(n,X[j]);
-
- for (j=0;j<N;j++)
- X[j] = MULT16_16_Q15(X[j], mid);
- for (j=0;j<N;j++)
- Y[j] = MULT16_16_Q15(Y[j], side);
-
- stereo_band_mix(m, X, Y, bandE, 0, i, -1);
- renormalise_vector(X, Q15ONE, N, 1);
- renormalise_vector(Y, Q15ONE, N, 1);
+ n = celt_sqrt(SHL32(EXTEND32(N),22));
+ for (j=0;j<N;j++)
+ norm[M*eBands[i]+j] = MULT16_16_Q15(n,X[j]);
+
+ for (j=0;j<N;j++)
+ X[j] = MULT16_16_Q15(X[j], mid);
+ for (j=0;j<N;j++)
+ Y[j] = MULT16_16_Q15(Y[j], side);
+
+ stereo_band_mix(m, X, Y, bandE, 0, i, -1, M);
+ renormalise_vector(X, Q15ONE, N, 1);
+ renormalise_vector(Y, Q15ONE, N, 1);
+ }
}
RESTORE_STACK;
}
#ifndef DISABLE_STEREO
-void unquant_bands_stereo(const CELTMode *m, celt_norm *_X, const celt_ener *bandE, int *pulses, int shortBlocks, int fold, int total_bits, ec_dec *dec)
+void unquant_bands_stereo(const CELTMode *m, int start, celt_norm *_X, const celt_ener *bandE, int *pulses, int shortBlocks, int fold, int total_bits, ec_dec *dec, int M)
{
int i, j, remaining_bits, balance;
const celt_int16 * restrict eBands = m->eBands;
SAVE_STACK;
B = shortBlocks ? m->nbShortMdcts : 1;
- ALLOC(_norm, eBands[m->nbEBands+1], celt_norm);
+ ALLOC(_norm, M*eBands[m->nbEBands+1], celt_norm);
norm = _norm;
balance = 0;
- for (i=0;i<m->nbEBands;i++)
+ for (i=start;i<m->nbEBands;i++)
{
int tell;
int q1, q2;
int qalloc;
celt_norm * restrict X, * restrict Y;
- X = _X+eBands[i];
- Y = X+eBands[m->nbEBands+1];
+ X = _X+M*eBands[i];
+ Y = X+M*eBands[m->nbEBands+1];
BPbits = m->bits;
- N = eBands[i+1]-eBands[i];
+ N = M*eBands[i+1]-M*eBands[i];
tell = ec_dec_tell(dec, BITRES);
- if (i != 0)
+ if (i != start)
balance -= tell;
remaining_bits = (total_bits<<BITRES)-tell-1;
curr_balance = (m->nbEBands-i);
iside = bitexact_cos(16384-itheta);
delta = (N-1)*(log2_frac(iside,BITRES+2)-log2_frac(imid,BITRES+2))>>2;
}
- n = SHL16(celt_sqrt((eBands[i+1]-eBands[i])),11);
+ n = celt_sqrt(SHL32(EXTEND32(N),22));
-#if 0
+#if 1
if (N==2)
{
- int c2;
+ int c, c2;
int sign=1;
celt_norm v[2], w[2];
celt_norm *x2, *y2;
int spread = fold ? B : 0;
alg_unquant(X, N, q1, spread, dec);
} else
- intra_fold(m, eBands[i+1]-eBands[i], norm, X, eBands[i], B);
+ intra_fold(m, start, N, norm, X, M*eBands[i], B, M);
if (q2 > 0)
{
int spread = fold ? B : 0;
} else
for (j=0;j<N;j++)
Y[j] = 0;
- /*orthogonalize(X+C*eBands[i], X+C*eBands[i]+N, N);*/
+ /*orthogonalize(X+C*M*eBands[i], X+C*M*eBands[i]+N, N);*/
}
balance += pulses[i] + tell;
mid = imid;
side = iside;
#else
- mid = (1./32768)*imid;
- side = (1./32768)*iside;
+ mid = (1.f/32768)*imid;
+ side = (1.f/32768)*iside;
#endif
for (j=0;j<N;j++)
- norm[eBands[i]+j] = MULT16_16_Q15(n,X[j]);
+ norm[M*eBands[i]+j] = MULT16_16_Q15(n,X[j]);
for (j=0;j<N;j++)
X[j] = MULT16_16_Q15(X[j], mid);
for (j=0;j<N;j++)
Y[j] = MULT16_16_Q15(Y[j], side);
- stereo_band_mix(m, X, Y, bandE, 0, i, -1);
+ stereo_band_mix(m, X, Y, bandE, 0, i, -1, M);
renormalise_vector(X, Q15ONE, N, 1);
renormalise_vector(Y, Q15ONE, N, 1);
}