-/* (C) 2007 Jean-Marc Valin, CSIRO
+/* (C) 2007-2008 Jean-Marc Valin, CSIRO
*/
/*
Redistribution and use in source and binary forms, with or without
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
#include <math.h>
#include "bands.h"
#include "modes.h"
#include "vq.h"
#include "cwrs.h"
+#include "stack_alloc.h"
+#include "os_support.h"
+#include "mathops.h"
+
+void exp_rotation(celt_norm_t *X, int len, int dir, int stride, int iter)
+{
+ int i, k;
+ celt_word16_t c, s;
+ /* Equivalent to cos(.3) and sin(.3) */
+ c = QCONST16(0.95534,15);
+ s = dir*QCONST16(0.29552,15);
+ for (k=0;k<iter;k++)
+ {
+ /* We could use MULT16_16_P15 instead of MULT16_16_Q15 for more accuracy,
+ but at this point, I really don't think it's necessary */
+ for (i=0;i<len-stride;i++)
+ {
+ celt_norm_t x1, x2;
+ x1 = X[i];
+ x2 = X[i+stride];
+ X[i] = MULT16_16_Q15(c,x1) - MULT16_16_Q15(s,x2);
+ X[i+stride] = MULT16_16_Q15(c,x2) + MULT16_16_Q15(s,x1);
+ }
+ for (i=len-2*stride-1;i>=0;i--)
+ {
+ celt_norm_t x1, x2;
+ x1 = X[i];
+ x2 = X[i+stride];
+ X[i] = MULT16_16_Q15(c,x1) - MULT16_16_Q15(s,x2);
+ X[i+stride] = MULT16_16_Q15(c,x2) + MULT16_16_Q15(s,x1);
+ }
+ }
+}
+
+const celt_word16_t sqrtC_1[2] = {QCONST16(1.f, 14), QCONST16(1.414214f, 14)};
-/* Compute the energy in each of the bands */
-void compute_band_energies(const CELTMode *m, float *X, float *bank)
+#ifdef FIXED_POINT
+/* Compute the amplitude (sqrt energy) in each of the bands */
+void compute_band_energies(const CELTMode *m, const celt_sig_t *X, celt_ener_t *bank)
{
- int i, B;
- const int *eBands = m->eBands;
- B = m->nbMdctBlocks;
- for (i=0;i<m->nbEBands;i++)
+ int i, c;
+ const celt_int16_t *eBands = m->eBands;
+ const int C = CHANNELS(m);
+ for (c=0;c<C;c++)
{
- int j;
- bank[i] = 1e-10;
- for (j=B*eBands[i];j<B*eBands[i+1];j++)
- bank[i] += X[j]*X[j];
- bank[i] = sqrt(bank[i]);
+ for (i=0;i<m->nbEBands;i++)
+ {
+ int j;
+ celt_word32_t maxval=0;
+ celt_word32_t sum = 0;
+ for (j=eBands[i];j<eBands[i+1];j++)
+ maxval = MAX32(maxval, ABS32(X[j*C+c]));
+ if (maxval > 0)
+ {
+ int shift = celt_ilog2(maxval)-10;
+ for (j=eBands[i];j<eBands[i+1];j++)
+ sum += MULT16_16(EXTRACT16(VSHR32(X[j*C+c],shift)),EXTRACT16(VSHR32(X[j*C+c],shift)));
+ /* We're adding one here to make damn sure we never end up with a pitch vector that's
+ larger than unity norm */
+ bank[i*C+c] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift);
+ } else {
+ bank[i*C+c] = EPSILON;
+ }
+ /*printf ("%f ", bank[i*C+c]);*/
+ }
}
+ /*printf ("\n");*/
}
/* Normalise each band such that the energy is one. */
-void normalise_bands(const CELTMode *m, float *X, float *bank)
+void normalise_bands(const CELTMode *m, const celt_sig_t * restrict freq, celt_norm_t * restrict X, const celt_ener_t *bank)
{
- int i, B;
- const int *eBands = m->eBands;
- B = m->nbMdctBlocks;
- for (i=0;i<m->nbEBands;i++)
+ int i, c;
+ const celt_int16_t *eBands = m->eBands;
+ const int C = CHANNELS(m);
+ for (c=0;c<C;c++)
{
- int j;
- float x = 1.f/(1e-10+bank[i]);
- for (j=B*eBands[i];j<B*eBands[i+1];j++)
- X[j] *= x;
+ for (i=0;i<m->nbEBands;i++)
+ {
+ celt_word16_t g;
+ int j,shift;
+ celt_word16_t E;
+ shift = celt_zlog2(bank[i*C+c])-13;
+ E = VSHR32(bank[i*C+c], shift);
+ g = EXTRACT16(celt_rcp(SHR32(MULT16_16(E,sqrtC_1[C-1]),11)));
+ for (j=eBands[i];j<eBands[i+1];j++)
+ X[j*C+c] = MULT16_16_Q14(VSHR32(freq[j*C+c],shift),g);
+ }
}
- for (i=B*eBands[m->nbEBands];i<B*eBands[m->nbEBands+1];i++)
+ for (i=C*eBands[m->nbEBands];i<C*eBands[m->nbEBands+1];i++)
X[i] = 0;
}
-/* De-normalise the energy to produce the synthesis from the unit-energy bands */
-void denormalise_bands(const CELTMode *m, float *X, float *bank)
+#ifndef DISABLE_STEREO
+void renormalise_bands(const CELTMode *m, celt_norm_t * restrict X)
{
- int i, B;
- const int *eBands = m->eBands;
- B = m->nbMdctBlocks;
- for (i=0;i<m->nbEBands;i++)
+ int i;
+ VARDECL(celt_ener_t, tmpE);
+ VARDECL(celt_sig_t, freq);
+ SAVE_STACK;
+ ALLOC(tmpE, m->nbEBands*m->nbChannels, celt_ener_t);
+ ALLOC(freq, m->nbChannels*m->eBands[m->nbEBands+1], celt_sig_t);
+ for (i=0;i<m->nbChannels*m->eBands[m->nbEBands+1];i++)
+ freq[i] = SHL32(EXTEND32(X[i]), 10);
+ compute_band_energies(m, freq, tmpE);
+ normalise_bands(m, freq, X, tmpE);
+ RESTORE_STACK;
+}
+#endif /* DISABLE_STEREO */
+#else /* FIXED_POINT */
+/* Compute the amplitude (sqrt energy) in each of the bands */
+void compute_band_energies(const CELTMode *m, const celt_sig_t *X, celt_ener_t *bank)
+{
+ int i, c;
+ const celt_int16_t *eBands = m->eBands;
+ const int C = CHANNELS(m);
+ for (c=0;c<C;c++)
{
- int j;
- float x = bank[i];
- for (j=B*eBands[i];j<B*eBands[i+1];j++)
- X[j] *= x;
+ for (i=0;i<m->nbEBands;i++)
+ {
+ int j;
+ celt_word32_t sum = 1e-10;
+ for (j=eBands[i];j<eBands[i+1];j++)
+ sum += X[j*C+c]*X[j*C+c];
+ bank[i*C+c] = sqrt(sum);
+ /*printf ("%f ", bank[i*C+c]);*/
+ }
+ }
+ /*printf ("\n");*/
+}
+
+/* Normalise each band such that the energy is one. */
+void normalise_bands(const CELTMode *m, const celt_sig_t * restrict freq, celt_norm_t * restrict X, const celt_ener_t *bank)
+{
+ int i, c;
+ const celt_int16_t *eBands = m->eBands;
+ const int C = CHANNELS(m);
+ for (c=0;c<C;c++)
+ {
+ for (i=0;i<m->nbEBands;i++)
+ {
+ int j;
+ celt_word16_t g = 1.f/(1e-10+bank[i*C+c]*sqrt(C));
+ for (j=eBands[i];j<eBands[i+1];j++)
+ X[j*C+c] = freq[j*C+c]*g;
+ }
}
- for (i=B*eBands[m->nbEBands];i<B*eBands[m->nbEBands+1];i++)
+ for (i=C*eBands[m->nbEBands];i<C*eBands[m->nbEBands+1];i++)
X[i] = 0;
}
+#ifndef DISABLE_STEREO
+void renormalise_bands(const CELTMode *m, celt_norm_t * restrict X)
+{
+ VARDECL(celt_ener_t, tmpE);
+ SAVE_STACK;
+ ALLOC(tmpE, m->nbEBands*m->nbChannels, celt_ener_t);
+ compute_band_energies(m, X, tmpE);
+ normalise_bands(m, X, X, tmpE);
+ RESTORE_STACK;
+}
+#endif /* DISABLE_STEREO */
+#endif /* FIXED_POINT */
-/* Compute the best gain for each "pitch band" */
-void compute_pitch_gain(const CELTMode *m, float *X, float *P, float *gains, float *bank)
+/* De-normalise the energy to produce the synthesis from the unit-energy bands */
+void denormalise_bands(const CELTMode *m, const celt_norm_t * restrict X, celt_sig_t * restrict freq, const celt_ener_t *bank)
{
- int i, B;
- const int *eBands = m->eBands;
- const int *pBands = m->pBands;
- B = m->nbMdctBlocks;
- float w[B*eBands[m->nbEBands]];
- for (i=0;i<m->nbEBands;i++)
+ int i, c;
+ const celt_int16_t *eBands = m->eBands;
+ const int C = CHANNELS(m);
+ if (C>2)
+ celt_fatal("denormalise_bands() not implemented for >2 channels");
+ for (c=0;c<C;c++)
{
- int j;
- for (j=B*eBands[i];j<B*eBands[i+1];j++)
- w[j] = bank[i];
+ for (i=0;i<m->nbEBands;i++)
+ {
+ int j;
+ celt_word32_t g = MULT16_32_Q14(sqrtC_1[C-1],bank[i*C+c]);
+ for (j=eBands[i];j<eBands[i+1];j++)
+ freq[j*C+c] = MULT16_32_Q14(X[j*C+c], g);
+ }
}
+ for (i=C*eBands[m->nbEBands];i<C*eBands[m->nbEBands+1];i++)
+ freq[i] = 0;
+}
+
+
+/* Compute the best gain for each "pitch band" */
+void compute_pitch_gain(const CELTMode *m, const celt_norm_t *X, const celt_norm_t *P, celt_pgain_t *gains)
+{
+ int i;
+ const celt_int16_t *pBands = m->pBands;
+ const int C = CHANNELS(m);
-
for (i=0;i<m->nbPBands;i++)
{
- float Sxy=0;
- float Sxx = 0;
+ celt_word32_t Sxy=0, Sxx=0;
int j;
- float gain;
- for (j=B*pBands[i];j<B*pBands[i+1];j++)
+ /* We know we're not going to overflow because Sxx can't be more than 1 (Q28) */
+ for (j=C*pBands[i];j<C*pBands[i+1];j++)
{
- Sxy += X[j]*P[j]*w[j];
- Sxx += X[j]*X[j]*w[j];
+ Sxy = MAC16_16(Sxy, X[j], P[j]);
+ Sxx = MAC16_16(Sxx, X[j], X[j]);
}
- gain = Sxy/(1e-10+Sxx);
- //gain = Sxy/(2*(pbank[i+1]-pbank[i]));
- //if (i<3)
- //gain *= 1+.02*gain;
- if (gain > .90)
- gain = .90;
- if (gain < 0.0)
- gain = 0.0;
-
- gains[i] = gain;
+ /* No negative gain allowed */
+ if (Sxy < 0)
+ Sxy = 0;
+ /* Not sure how that would happen, just making sure */
+ if (Sxy > Sxx)
+ Sxy = Sxx;
+ /* We need to be a bit conservative (multiply gain by 0.9), otherwise the
+ residual doesn't quantise well */
+ Sxy = MULT16_32_Q15(QCONST16(.9f, 15), Sxy);
+ /* gain = Sxy/Sxx */
+ gains[i] = EXTRACT16(celt_div(Sxy,ADD32(SHR32(Sxx, PGAIN_SHIFT),EPSILON)));
+ /*printf ("%f ", 1-sqrt(1-gain*gain));*/
}
- for (i=B*pBands[m->nbPBands];i<B*pBands[m->nbPBands+1];i++)
- P[i] = 0;
+ /*if(rand()%10==0)
+ {
+ for (i=0;i<m->nbPBands;i++)
+ printf ("%f ", 1-sqrt(1-gains[i]*gains[i]));
+ printf ("\n");
+ }*/
}
/* Apply the (quantised) gain to each "pitch band" */
-void pitch_quant_bands(const CELTMode *m, float *X, float *P, float *gains)
+void pitch_quant_bands(const CELTMode *m, celt_norm_t * restrict P, const celt_pgain_t * restrict gains)
{
- int i, B;
- const int *pBands = m->pBands;
- B = m->nbMdctBlocks;
+ int i;
+ const celt_int16_t *pBands = m->pBands;
+ const int C = CHANNELS(m);
for (i=0;i<m->nbPBands;i++)
{
int j;
- for (j=B*pBands[i];j<B*pBands[i+1];j++)
- P[j] *= gains[i];
- //printf ("%f ", gain);
+ for (j=C*pBands[i];j<C*pBands[i+1];j++)
+ P[j] = MULT16_16_Q15(gains[i], P[j]);
+ /*printf ("%f ", gain);*/
}
- for (i=B*pBands[m->nbPBands];i<B*pBands[m->nbPBands+1];i++)
+ for (i=C*pBands[m->nbPBands];i<C*pBands[m->nbPBands+1];i++)
P[i] = 0;
}
-void quant_bands(const CELTMode *m, float *X, float *P, ec_enc *enc)
+
+/* Quantisation of the residual */
+void quant_bands(const CELTMode *m, celt_norm_t * restrict X, celt_norm_t *P, celt_mask_t *W, int total_bits, ec_enc *enc)
{
- int i, j, B;
- const int *eBands = m->eBands;
- B = m->nbMdctBlocks;
- float norm[B*eBands[m->nbEBands+1]];
+ int i, j, bits;
+ const celt_int16_t *eBands = m->eBands;
+ celt_norm_t * restrict norm;
+ VARDECL(celt_norm_t, _norm);
+ VARDECL(int, pulses);
+ VARDECL(int, offsets);
+ const int C = CHANNELS(m);
+ SAVE_STACK;
+
+ ALLOC(_norm, C*eBands[m->nbEBands+1], celt_norm_t);
+ ALLOC(pulses, m->nbEBands, int);
+ ALLOC(offsets, m->nbEBands, int);
+ norm = _norm;
+
+ for (i=0;i<m->nbEBands;i++)
+ offsets[i] = 0;
+ /* Use a single-bit margin to guard against overrunning (make sure it's enough) */
+ bits = total_bits - ec_enc_tell(enc, 0) - 1;
+ compute_allocation(m, offsets, bits, pulses);
+ /*printf("bits left: %d\n", bits);
+ for (i=0;i<m->nbEBands;i++)
+ printf ("%d ", pulses[i]);
+ printf ("\n");*/
+ /*printf ("%d %d\n", ec_enc_tell(enc, 0), compute_allocation(m, m->nbPulses));*/
+ for (i=0;i<m->nbEBands;i++)
+ {
+ int q;
+ celt_word16_t n;
+ q = pulses[i];
+ n = SHL16(celt_sqrt(C*(eBands[i+1]-eBands[i])),11);
+
+ /* If pitch isn't available, use intra-frame prediction */
+ if (eBands[i] >= m->pitchEnd || q<=0)
+ {
+ q -= 1;
+ if (q<0)
+ intra_fold(X+C*eBands[i], eBands[i+1]-eBands[i], norm, P+C*eBands[i], C, eBands[i], eBands[m->nbEBands+1]);
+ else
+ intra_prediction(X+C*eBands[i], W+C*eBands[i], eBands[i+1]-eBands[i], q, norm, P+C*eBands[i], C, eBands[i], enc);
+ }
+
+ if (q > 0)
+ {
+ int nb_rotations = q <= 2*C ? 2*C/q : 0;
+ if (nb_rotations != 0)
+ {
+ exp_rotation(P+C*eBands[i], C*(eBands[i+1]-eBands[i]), -1, C, nb_rotations);
+ exp_rotation(X+C*eBands[i], C*(eBands[i+1]-eBands[i]), -1, C, nb_rotations);
+ }
+ alg_quant(X+C*eBands[i], W+C*eBands[i], C*(eBands[i+1]-eBands[i]), q, P+C*eBands[i], enc);
+ if (nb_rotations != 0)
+ exp_rotation(X+C*eBands[i], C*(eBands[i+1]-eBands[i]), 1, C, nb_rotations);
+ }
+ for (j=C*eBands[i];j<C*eBands[i+1];j++)
+ norm[j] = MULT16_16_Q15(n,X[j]);
+ }
+ for (i=C*eBands[m->nbEBands];i<C*eBands[m->nbEBands+1];i++)
+ X[i] = 0;
+ RESTORE_STACK;
+}
+
+/* Decoding of the residual */
+void unquant_bands(const CELTMode *m, celt_norm_t * restrict X, celt_norm_t *P, int total_bits, ec_dec *dec)
+{
+ int i, j, bits;
+ const celt_int16_t *eBands = m->eBands;
+ celt_norm_t * restrict norm;
+ VARDECL(celt_norm_t, _norm);
+ VARDECL(int, pulses);
+ VARDECL(int, offsets);
+ const int C = CHANNELS(m);
+ SAVE_STACK;
+
+ ALLOC(_norm, C*eBands[m->nbEBands+1], celt_norm_t);
+ ALLOC(pulses, m->nbEBands, int);
+ ALLOC(offsets, m->nbEBands, int);
+ norm = _norm;
+
+ for (i=0;i<m->nbEBands;i++)
+ offsets[i] = 0;
+ /* Use a single-bit margin to guard against overrunning (make sure it's enough) */
+ bits = total_bits - ec_dec_tell(dec, 0) - 1;
+ compute_allocation(m, offsets, bits, pulses);
+
for (i=0;i<m->nbEBands;i++)
{
- int q, id;
- q = m->nbPulses[i];
- if (q>0) {
- float n = sqrt(B*(eBands[i+1]-eBands[i]));
- alg_quant(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), q, P+B*eBands[i], enc);
- for (j=B*eBands[i];j<B*eBands[i+1];j++)
- norm[j] = X[j] * n;
- //printf ("%f ", log2(ncwrs(B*(eBands[i+1]-eBands[i]), q))/(B*(eBands[i+1]-eBands[i])));
- } else {
- float n = sqrt(B*(eBands[i+1]-eBands[i]));
- copy_quant(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), -q, norm, B, eBands[i], enc);
- for (j=B*eBands[i];j<B*eBands[i+1];j++)
- norm[j] = X[j] * n;
- //printf ("%f ", (1+log2(eBands[i]-(eBands[i+1]-eBands[i]))+log2(ncwrs(B*(eBands[i+1]-eBands[i]), -q)))/(B*(eBands[i+1]-eBands[i])));
+ int q;
+ celt_word16_t n;
+ q = pulses[i];
+ n = SHL16(celt_sqrt(C*(eBands[i+1]-eBands[i])),11);
+
+ /* If pitch isn't available, use intra-frame prediction */
+ if (eBands[i] >= m->pitchEnd || q<=0)
+ {
+ q -= 1;
+ if (q<0)
+ intra_fold(X+C*eBands[i], eBands[i+1]-eBands[i], norm, P+C*eBands[i], C, eBands[i], eBands[m->nbEBands+1]);
+ else
+ intra_unquant(X+C*eBands[i], eBands[i+1]-eBands[i], q, norm, P+C*eBands[i], C, eBands[i], dec);
+ }
+
+ if (q > 0)
+ {
+ int nb_rotations = q <= 2*C ? 2*C/q : 0;
+ if (nb_rotations != 0)
+ exp_rotation(P+C*eBands[i], C*(eBands[i+1]-eBands[i]), -1, C, nb_rotations);
+ alg_unquant(X+C*eBands[i], C*(eBands[i+1]-eBands[i]), q, P+C*eBands[i], dec);
+ if (nb_rotations != 0)
+ exp_rotation(X+C*eBands[i], C*(eBands[i+1]-eBands[i]), 1, C, nb_rotations);
}
+ for (j=C*eBands[i];j<C*eBands[i+1];j++)
+ norm[j] = MULT16_16_Q15(n,X[j]);
}
- //printf ("\n");
- for (i=B*eBands[m->nbEBands];i<B*eBands[m->nbEBands+1];i++)
+ for (i=C*eBands[m->nbEBands];i<C*eBands[m->nbEBands+1];i++)
X[i] = 0;
+ RESTORE_STACK;
}
-void unquant_bands(const CELTMode *m, float *X, float *P, ec_dec *dec)
+#ifndef DISABLE_STEREO
+void stereo_mix(const CELTMode *m, celt_norm_t *X, const celt_ener_t *bank, int dir)
{
- int i, j, B;
- const int *eBands = m->eBands;
- B = m->nbMdctBlocks;
- float norm[B*eBands[m->nbEBands+1]];
-
+ int i;
+ const celt_int16_t *eBands = m->eBands;
+ const int C = CHANNELS(m);
for (i=0;i<m->nbEBands;i++)
{
- int q, id;
- q = m->nbPulses[i];
- if (q>0) {
- float n = sqrt(B*(eBands[i+1]-eBands[i]));
- alg_unquant(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), q, P+B*eBands[i], dec);
- for (j=B*eBands[i];j<B*eBands[i+1];j++)
- norm[j] = X[j] * n;
- } else {
- float n = sqrt(B*(eBands[i+1]-eBands[i]));
- for (j=B*eBands[i];j<B*eBands[i+1];j++)
- X[j] = 0;
- copy_unquant(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), -q, norm, B, eBands[i], dec);
- for (j=B*eBands[i];j<B*eBands[i+1];j++)
- norm[j] = X[j] * n;
+ int j;
+ celt_word16_t left, right;
+ celt_word16_t a1, a2;
+ celt_word16_t norm;
+#ifdef FIXED_POINT
+ int shift = celt_zlog2(MAX32(bank[i*C], bank[i*C+1]))-13;
+#endif
+ left = VSHR32(bank[i*C],shift);
+ right = VSHR32(bank[i*C+1],shift);
+ norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right));
+ a1 = DIV32_16(SHL32(EXTEND32(left),14),norm);
+ a2 = dir*DIV32_16(SHL32(EXTEND32(right),14),norm);
+ for (j=eBands[i];j<eBands[i+1];j++)
+ {
+ celt_norm_t r, l;
+ l = X[j*C];
+ r = X[j*C+1];
+ X[j*C] = MULT16_16_Q14(a1,l) + MULT16_16_Q14(a2,r);
+ X[j*C+1] = MULT16_16_Q14(a1,r) - MULT16_16_Q14(a2,l);
}
}
- for (i=B*eBands[m->nbEBands];i<B*eBands[m->nbEBands+1];i++)
+ for (i=C*eBands[m->nbEBands];i<C*eBands[m->nbEBands+1];i++)
X[i] = 0;
}
+#endif
\ No newline at end of file