1 /***********************************************************************
\r
2 Copyright (c) 2006-2010, Skype Limited. All rights reserved.
\r
3 Redistribution and use in source and binary forms, with or without
\r
4 modification, (subject to the limitations in the disclaimer below)
\r
5 are permitted provided that the following conditions are met:
\r
6 - Redistributions of source code must retain the above copyright notice,
\r
7 this list of conditions and the following disclaimer.
\r
8 - Redistributions in binary form must reproduce the above copyright
\r
9 notice, this list of conditions and the following disclaimer in the
\r
10 documentation and/or other materials provided with the distribution.
\r
11 - Neither the name of Skype Limited, nor the names of specific
\r
12 contributors, may be used to endorse or promote products derived from
\r
13 this software without specific prior written permission.
\r
14 NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED
\r
15 BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
\r
16 CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
\r
17 BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
\r
18 FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
\r
19 COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
\r
20 INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
\r
21 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
\r
22 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
\r
23 ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
\r
24 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
\r
25 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
\r
26 ***********************************************************************/
\r
28 #include "SKP_Silk_main_FLP.h"
\r
29 #include "SKP_Silk_tuning_parameters.h"
\r
31 /**********************************************************************
\r
32 * LDL Factorisation. Finds the upper triangular matrix L and the diagonal
\r
33 * Matrix D (only the diagonal elements returned in a vector)such that
\r
34 * the symmetric matric A is given by A = L*D*L'.
\r
35 **********************************************************************/
\r
36 void SKP_Silk_LDL_FLP(
\r
37 SKP_float *A, /* (I/O) Pointer to Symetric Square Matrix */
\r
38 SKP_int M, /* (I) Size of Matrix */
\r
39 SKP_float *L, /* (I/O) Pointer to Square Upper triangular Matrix */
\r
40 SKP_float *Dinv /* (I/O) Pointer to vector holding the inverse diagonal elements of D */
\r
43 /**********************************************************************
\r
44 * Function to solve linear equation Ax = b, when A is a MxM lower
\r
45 * triangular matrix, with ones on the diagonal.
\r
46 **********************************************************************/
\r
47 void SKP_Silk_SolveWithLowerTriangularWdiagOnes_FLP(
\r
48 const SKP_float *L, /* (I) Pointer to Lower Triangular Matrix */
\r
49 SKP_int M, /* (I) Dim of Matrix equation */
\r
50 const SKP_float *b, /* (I) b Vector */
\r
51 SKP_float *x /* (O) x Vector */
\r
54 /**********************************************************************
\r
55 * Function to solve linear equation (A^T)x = b, when A is a MxM lower
\r
56 * triangular, with ones on the diagonal. (ie then A^T is upper triangular)
\r
57 **********************************************************************/
\r
58 void SKP_Silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP(
\r
59 const SKP_float *L, /* (I) Pointer to Lower Triangular Matrix */
\r
60 SKP_int M, /* (I) Dim of Matrix equation */
\r
61 const SKP_float *b, /* (I) b Vector */
\r
62 SKP_float *x /* (O) x Vector */
\r
65 /**********************************************************************
\r
66 * Function to solve linear equation Ax = b, when A is a MxM
\r
67 * symmetric square matrix - using LDL factorisation
\r
68 **********************************************************************/
\r
69 void SKP_Silk_solve_LDL_FLP(
\r
70 SKP_float *A, /* I/O Symmetric square matrix, out: reg. */
\r
71 const SKP_int M, /* I Size of matrix */
\r
72 const SKP_float *b, /* I Pointer to b vector */
\r
73 SKP_float *x /* O Pointer to x solution vector */
\r
77 SKP_float L[ MAX_MATRIX_SIZE ][ MAX_MATRIX_SIZE ];
\r
78 SKP_float T[ MAX_MATRIX_SIZE ];
\r
79 SKP_float Dinv[ MAX_MATRIX_SIZE ]; // inverse diagonal elements of D
\r
81 SKP_assert( M <= MAX_MATRIX_SIZE );
\r
83 /***************************************************
\r
84 Factorize A by LDL such that A = L*D*(L^T),
\r
85 where L is lower triangular with ones on diagonal
\r
86 ****************************************************/
\r
87 SKP_Silk_LDL_FLP( A, M, &L[ 0 ][ 0 ], Dinv );
\r
89 /****************************************************
\r
90 * substitute D*(L^T) = T. ie:
\r
91 L*D*(L^T)*x = b => L*T = b <=> T = inv(L)*b
\r
92 ******************************************************/
\r
93 SKP_Silk_SolveWithLowerTriangularWdiagOnes_FLP( &L[ 0 ][ 0 ], M, b, T );
\r
95 /****************************************************
\r
96 D*(L^T)*x = T <=> (L^T)*x = inv(D)*T, because D is
\r
97 diagonal just multiply with 1/d_i
\r
98 ****************************************************/
\r
99 for( i = 0; i < M; i++ ) {
\r
100 T[ i ] = T[ i ] * Dinv[ i ];
\r
102 /****************************************************
\r
103 x = inv(L') * inv(D) * T
\r
104 *****************************************************/
\r
105 SKP_Silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP( &L[ 0 ][ 0 ], M, T, x );
\r
108 void SKP_Silk_SolveWithUpperTriangularFromLowerWdiagOnes_FLP(
\r
109 const SKP_float *L, /* (I) Pointer to Lower Triangular Matrix */
\r
110 SKP_int M, /* (I) Dim of Matrix equation */
\r
111 const SKP_float *b, /* (I) b Vector */
\r
112 SKP_float *x /* (O) x Vector */
\r
117 const SKP_float *ptr1;
\r
119 for( i = M - 1; i >= 0; i-- ) {
\r
120 ptr1 = matrix_adr( L, 0, i, M );
\r
122 for( j = M - 1; j > i ; j-- ) {
\r
123 temp += ptr1[ j * M ] * x[ j ];
\r
125 temp = b[ i ] - temp;
\r
130 void SKP_Silk_SolveWithLowerTriangularWdiagOnes_FLP(
\r
131 const SKP_float *L, /* (I) Pointer to Lower Triangular Matrix */
\r
132 SKP_int M, /* (I) Dim of Matrix equation */
\r
133 const SKP_float *b, /* (I) b Vector */
\r
134 SKP_float *x /* (O) x Vector */
\r
139 const SKP_float *ptr1;
\r
141 for( i = 0; i < M; i++ ) {
\r
142 ptr1 = matrix_adr( L, i, 0, M );
\r
144 for( j = 0; j < i; j++ ) {
\r
145 temp += ptr1[ j ] * x[ j ];
\r
147 temp = b[ i ] - temp;
\r
152 void SKP_Silk_LDL_FLP(
\r
153 SKP_float *A, /* (I/O) Pointer to Symetric Square Matrix */
\r
154 SKP_int M, /* (I) Size of Matrix */
\r
155 SKP_float *L, /* (I/O) Pointer to Square Upper triangular Matrix */
\r
156 SKP_float *Dinv /* (I/O) Pointer to vector holding the inverse diagonal elements of D */
\r
159 SKP_int i, j, k, loop_count, err = 1;
\r
160 SKP_float *ptr1, *ptr2;
\r
161 double temp, diag_min_value;
\r
162 SKP_float v[ MAX_MATRIX_SIZE ], D[ MAX_MATRIX_SIZE ]; // temp arrays
\r
164 SKP_assert( M <= MAX_MATRIX_SIZE );
\r
166 diag_min_value = FIND_LTP_COND_FAC * 0.5f * ( A[ 0 ] + A[ M * M - 1 ] );
\r
167 for( loop_count = 0; loop_count < M && err == 1; loop_count++ ) {
\r
169 for( j = 0; j < M; j++ ) {
\r
170 ptr1 = matrix_adr( L, j, 0, M );
\r
171 temp = matrix_ptr( A, j, j, M ); // element in row j column j
\r
172 for( i = 0; i < j; i++ ) {
\r
173 v[ i ] = ptr1[ i ] * D[ i ];
\r
174 temp -= ptr1[ i ] * v[ i ];
\r
176 if( temp < diag_min_value ) {
\r
177 /* Badly conditioned matrix: add white noise and run again */
\r
178 temp = ( loop_count + 1 ) * diag_min_value - temp;
\r
179 for( i = 0; i < M; i++ ) {
\r
180 matrix_ptr( A, i, i, M ) += ( SKP_float )temp;
\r
185 D[ j ] = ( SKP_float )temp;
\r
186 Dinv[ j ] = ( SKP_float )( 1.0f / temp );
\r
187 matrix_ptr( L, j, j, M ) = 1.0f;
\r
189 ptr1 = matrix_adr( A, j, 0, M );
\r
190 ptr2 = matrix_adr( L, j + 1, 0, M);
\r
191 for( i = j + 1; i < M; i++ ) {
\r
193 for( k = 0; k < j; k++ ) {
\r
194 temp += ptr2[ k ] * v[ k ];
\r
196 matrix_ptr( L, i, j, M ) = ( SKP_float )( ( ptr1[ i ] - temp ) * Dinv[ j ] );
\r
197 ptr2 += M; // go to next column
\r
201 SKP_assert( err == 0 );
\r