d8459ae74e77e6ce4d5f78b2e7d2436f3dd08a93
[opus.git] / silk / fixed / noise_shape_analysis_FIX.c
1 /***********************************************************************
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 - Redistributions of source code must retain the above copyright notice,
7 this list of conditions and the following disclaimer.
8 - Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the
10 documentation and/or other materials provided with the distribution.
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the 
12 names of specific contributors, may be used to endorse or promote
13 products derived from this software without specific prior written
14 permission.
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 POSSIBILITY OF SUCH DAMAGE.
26 ***********************************************************************/
27
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "main_FIX.h"
33 #include "tuning_parameters.h"
34
35 /* Compute gain to make warped filter coefficients have a zero mean log frequency response on a     */
36 /* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.)   */
37 /* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk
38    we omit the first coefficient in an array of coefficients, for monic filters.
39 */
40 static inline opus_int32 warped_gain( /* gain in Q16*/
41     const opus_int32     *coefs_Q24,
42     opus_int             lambda_Q16,
43     opus_int             order
44 ) {
45     opus_int   i;
46     opus_int32 gain_Q24;
47
48     lambda_Q16 = -lambda_Q16;
49     gain_Q24 = coefs_Q24[ order - 1 ];
50     for( i = order - 2; i >= 0; i-- ) {
51         gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 );
52     }
53     gain_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 );
54     return silk_INVERSE32_varQ( gain_Q24, 40 );
55 }
56
57 /* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum     */
58 /* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */
59 static inline void limit_warped_coefs(
60     opus_int32           *coefs_syn_Q24,
61     opus_int32           *coefs_ana_Q24,
62     opus_int             lambda_Q16,
63     opus_int32           limit_Q24,
64     opus_int             order
65 ) {
66     opus_int   i, iter, ind = 0;
67     opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_syn_Q16, gain_ana_Q16;
68     opus_int32 nom_Q16, den_Q24;
69
70     /* Convert to monic coefficients */
71     lambda_Q16 = -lambda_Q16;
72     for( i = order - 1; i > 0; i-- ) {
73         coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
74         coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
75     }
76     lambda_Q16 = -lambda_Q16;
77     nom_Q16  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -lambda_Q16,        lambda_Q16 );
78     den_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 );
79     gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
80     den_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 );
81     gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
82     for( i = 0; i < order; i++ ) {
83         coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
84         coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
85     }
86
87     for( iter = 0; iter < 10; iter++ ) {
88         /* Find maximum absolute value */
89         maxabs_Q24 = -1;
90         for( i = 0; i < order; i++ ) {
91             tmp = silk_max( silk_abs_int32( coefs_syn_Q24[ i ] ), silk_abs_int32( coefs_ana_Q24[ i ] ) );
92             if( tmp > maxabs_Q24 ) {
93                 maxabs_Q24 = tmp;
94                 ind = i;
95             }
96         }
97         if( maxabs_Q24 <= limit_Q24 ) {
98             /* Coefficients are within range - done */
99             return;
100         }
101
102         /* Convert back to true warped coefficients */
103         for( i = 1; i < order; i++ ) {
104             coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
105             coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
106         }
107         gain_syn_Q16 = silk_INVERSE32_varQ( gain_syn_Q16, 32 );
108         gain_ana_Q16 = silk_INVERSE32_varQ( gain_ana_Q16, 32 );
109         for( i = 0; i < order; i++ ) {
110             coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
111             coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
112         }
113
114         /* Apply bandwidth expansion */
115         chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ(
116             silk_SMULWB( maxabs_Q24 - limit_Q24, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ),
117             silk_MUL( maxabs_Q24, ind + 1 ), 22 );
118         silk_bwexpander_32( coefs_syn_Q24, order, chirp_Q16 );
119         silk_bwexpander_32( coefs_ana_Q24, order, chirp_Q16 );
120
121         /* Convert to monic warped coefficients */
122         lambda_Q16 = -lambda_Q16;
123         for( i = order - 1; i > 0; i-- ) {
124             coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
125             coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
126         }
127         lambda_Q16 = -lambda_Q16;
128         nom_Q16  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -lambda_Q16,        lambda_Q16 );
129         den_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 );
130         gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
131         den_Q24  = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 );
132         gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
133         for( i = 0; i < order; i++ ) {
134             coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
135             coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
136         }
137     }
138     silk_assert( 0 );
139 }
140
141 /**************************************************************/
142 /* Compute noise shaping coefficients and initial gain values */
143 /**************************************************************/
144 void silk_noise_shape_analysis_FIX(
145     silk_encoder_state_FIX          *psEnc,                                 /* I/O  Encoder state FIX                                                           */
146     silk_encoder_control_FIX        *psEncCtrl,                             /* I/O  Encoder control FIX                                                         */
147     const opus_int16                *pitch_res,                             /* I    LPC residual from pitch analysis                                            */
148     const opus_int16                *x                                      /* I    Input signal [ frame_length + la_shape ]                                    */
149 )
150 {
151     silk_shape_state_FIX *psShapeSt = &psEnc->sShape;
152     opus_int     k, i, nSamples, Qnrg, b_Q14, warping_Q16, scale = 0;
153     opus_int32   SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp32;
154     opus_int32   nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7;
155     opus_int32   delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8;
156     opus_int32   auto_corr[     MAX_SHAPE_LPC_ORDER + 1 ];
157     opus_int32   refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ];
158     opus_int32   AR1_Q24[       MAX_SHAPE_LPC_ORDER ];
159     opus_int32   AR2_Q24[       MAX_SHAPE_LPC_ORDER ];
160     opus_int16   x_windowed[    SHAPE_LPC_WIN_MAX ];
161     const opus_int16 *x_ptr, *pitch_res_ptr;
162
163     /* Point to start of first LPC analysis block */
164     x_ptr = x - psEnc->sCmn.la_shape;
165
166     /****************/
167     /* GAIN CONTROL */
168     /****************/
169     SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7;
170
171     /* Input quality is the average of the quality in the lowest two VAD bands */
172     psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ]
173         + psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 );
174
175     /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */
176     psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 -
177         SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 );
178
179     /* Reduce coding SNR during low speech activity */
180     if( psEnc->sCmn.useCBR == 0 ) {
181         b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8;
182         b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 );
183         SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
184             silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ),                                       /* Q11*/
185             silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) );     /* Q12*/
186     }
187
188     if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
189         /* Reduce gains for periodic signals */
190         SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 );
191     } else {
192         /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */
193         SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
194             silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ),
195             SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 );
196     }
197
198     /*************************/
199     /* SPARSENESS PROCESSING */
200     /*************************/
201     /* Set quantizer offset */
202     if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
203         /* Initally set to 0; may be overruled in process_gains(..) */
204         psEnc->sCmn.indices.quantOffsetType = 0;
205         psEncCtrl->sparseness_Q8 = 0;
206     } else {
207         /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
208         nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 );
209         energy_variation_Q7 = 0;
210         log_energy_prev_Q7  = 0;
211         pitch_res_ptr = pitch_res;
212         for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) {
213             silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples );
214             nrg += silk_RSHIFT( nSamples, scale );           /* Q(-scale)*/
215
216             log_energy_Q7 = silk_lin2log( nrg );
217             if( k > 0 ) {
218                 energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 );
219             }
220             log_energy_prev_Q7 = log_energy_Q7;
221             pitch_res_ptr += nSamples;
222         }
223
224         psEncCtrl->sparseness_Q8 = silk_RSHIFT( silk_sigm_Q15( silk_SMULWB( energy_variation_Q7 -
225             SILK_FIX_CONST( 5.0, 7 ), SILK_FIX_CONST( 0.1, 16 ) ) ), 7 );
226
227         /* Set quantization offset depending on sparseness measure */
228         if( psEncCtrl->sparseness_Q8 > SILK_FIX_CONST( SPARSENESS_THRESHOLD_QNT_OFFSET, 8 ) ) {
229             psEnc->sCmn.indices.quantOffsetType = 0;
230         } else {
231             psEnc->sCmn.indices.quantOffsetType = 1;
232         }
233
234         /* Increase coding SNR for sparse signals */
235         SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( SPARSE_SNR_INCR_dB, 15 ), psEncCtrl->sparseness_Q8 - SILK_FIX_CONST( 0.5, 8 ) );
236     }
237
238     /*******************************/
239     /* Control bandwidth expansion */
240     /*******************************/
241     /* More BWE for signals with high prediction gain */
242     strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) );
243     BWExp1_Q16 = BWExp2_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ),
244         silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 );
245     delta_Q16  = silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - silk_SMULBB( 3, psEncCtrl->coding_quality_Q14 ),
246         SILK_FIX_CONST( LOW_RATE_BANDWIDTH_EXPANSION_DELTA, 16 ) );
247     BWExp1_Q16 = silk_SUB32( BWExp1_Q16, delta_Q16 );
248     BWExp2_Q16 = silk_ADD32( BWExp2_Q16, delta_Q16 );
249     /* BWExp1 will be applied after BWExp2, so make it relative */
250     BWExp1_Q16 = silk_DIV32_16( silk_LSHIFT( BWExp1_Q16, 14 ), silk_RSHIFT( BWExp2_Q16, 2 ) );
251
252     if( psEnc->sCmn.warping_Q16 > 0 ) {
253         /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
254         warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) );
255     } else {
256         warping_Q16 = 0;
257     }
258
259     /********************************************/
260     /* Compute noise shaping AR coefs and gains */
261     /********************************************/
262     for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
263         /* Apply window: sine slope followed by flat part followed by cosine slope */
264         opus_int shift, slope_part, flat_part;
265         flat_part = psEnc->sCmn.fs_kHz * 3;
266         slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 );
267
268         silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part );
269         shift = slope_part;
270         silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) );
271         shift += flat_part;
272         silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part );
273
274         /* Update pointer: next LPC analysis block */
275         x_ptr += psEnc->sCmn.subfr_length;
276
277         if( psEnc->sCmn.warping_Q16 > 0 ) {
278             /* Calculate warped auto correlation */
279             silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder );
280         } else {
281             /* Calculate regular auto correlation */
282             silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1 );
283         }
284
285         /* Add white noise, as a fraction of energy */
286         auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ),
287             SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) );
288
289         /* Calculate the reflection coefficients using schur */
290         nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder );
291         silk_assert( nrg >= 0 );
292
293         /* Convert reflection coefficients to prediction coefficients */
294         silk_k2a_Q16( AR2_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder );
295
296         Qnrg = -scale;          /* range: -12...30*/
297         silk_assert( Qnrg >= -12 );
298         silk_assert( Qnrg <=  30 );
299
300         /* Make sure that Qnrg is an even number */
301         if( Qnrg & 1 ) {
302             Qnrg -= 1;
303             nrg >>= 1;
304         }
305
306         tmp32 = silk_SQRT_APPROX( nrg );
307         Qnrg >>= 1;             /* range: -6...15*/
308
309         psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg );
310
311         if( psEnc->sCmn.warping_Q16 > 0 ) {
312             /* Adjust gain for warping */
313             gain_mult_Q16 = warped_gain( AR2_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder );
314             silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
315             psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
316             if( psEncCtrl->Gains_Q16[ k ] < 0 ) {
317                 psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX;
318             }
319         }
320
321         /* Bandwidth expansion for synthesis filter shaping */
322         silk_bwexpander_32( AR2_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 );
323
324         /* Compute noise shaping filter coefficients */
325         silk_memcpy( AR1_Q24, AR2_Q24, psEnc->sCmn.shapingLPCOrder * sizeof( opus_int32 ) );
326
327         /* Bandwidth expansion for analysis filter shaping */
328         silk_assert( BWExp1_Q16 <= SILK_FIX_CONST( 1.0, 16 ) );
329         silk_bwexpander_32( AR1_Q24, psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 );
330
331         /* Ratio of prediction gains, in energy domain */
332         pre_nrg_Q30 = silk_LPC_inverse_pred_gain_Q24( AR2_Q24, psEnc->sCmn.shapingLPCOrder );
333         nrg         = silk_LPC_inverse_pred_gain_Q24( AR1_Q24, psEnc->sCmn.shapingLPCOrder );
334
335         /*psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ) = 0.3f + 0.7f * pre_nrg / nrg;*/
336         pre_nrg_Q30 = silk_LSHIFT32( silk_SMULWB( pre_nrg_Q30, SILK_FIX_CONST( 0.7, 15 ) ), 1 );
337         psEncCtrl->GainsPre_Q14[ k ] = ( opus_int ) SILK_FIX_CONST( 0.3, 14 ) + silk_DIV32_varQ( pre_nrg_Q30, nrg, 14 );
338
339         /* Convert to monic warped prediction coefficients and limit absolute values */
340         limit_warped_coefs( AR2_Q24, AR1_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder );
341
342         /* Convert from Q24 to Q13 and store in int16 */
343         for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) {
344             psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR1_Q24[ i ], 11 ) );
345             psEncCtrl->AR2_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR2_Q24[ i ], 11 ) );
346         }
347     }
348
349     /*****************/
350     /* Gain tweaking */
351     /*****************/
352     /* Increase gains during low speech activity and put lower limit on gains */
353     gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) );
354     gain_add_Q16  = silk_log2lin(  silk_SMLAWB(  SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) );
355     silk_assert( gain_mult_Q16 > 0 );
356     for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
357         psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
358         silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
359         psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 );
360     }
361
362     gain_mult_Q16 = SILK_FIX_CONST( 1.0, 16 ) + silk_RSHIFT_ROUND( silk_MLA( SILK_FIX_CONST( INPUT_TILT, 26 ),
363         psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( HIGH_RATE_INPUT_TILT, 12 ) ), 10 );
364     for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
365         psEncCtrl->GainsPre_Q14[ k ] = silk_SMULWB( gain_mult_Q16, psEncCtrl->GainsPre_Q14[ k ] );
366     }
367
368     /************************************************/
369     /* Control low-frequency shaping and noise tilt */
370     /************************************************/
371     /* Less low frequency shaping for noisy inputs */
372     strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ),
373         SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) );
374     strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 );
375     if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
376         /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */
377         /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/
378         opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz );
379         for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
380             b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] );
381             /* Pack two coefficients in one int32 */
382             psEncCtrl->LF_shp_Q14[ k ]  = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 );
383             psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
384         }
385         silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/
386         Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) -
387             silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ),
388                 silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) );
389     } else {
390         b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/
391         /* Pack two coefficients in one int32 */
392         psEncCtrl->LF_shp_Q14[ 0 ]  = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 -
393             silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 );
394         psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
395         for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) {
396             psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ];
397         }
398         Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 );
399     }
400
401     /****************************/
402     /* HARMONIC SHAPING CONTROL */
403     /****************************/
404     /* Control boosting of harmonic frequencies */
405     HarmBoost_Q16 = silk_SMULWB( silk_SMULWB( SILK_FIX_CONST( 1.0, 17 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 3 ),
406         psEnc->LTPCorr_Q15 ), SILK_FIX_CONST( LOW_RATE_HARMONIC_BOOST, 16 ) );
407
408     /* More harmonic boost for noisy input signals */
409     HarmBoost_Q16 = silk_SMLAWB( HarmBoost_Q16,
410         SILK_FIX_CONST( 1.0, 16 ) - silk_LSHIFT( psEncCtrl->input_quality_Q14, 2 ), SILK_FIX_CONST( LOW_INPUT_QUALITY_HARMONIC_BOOST, 16 ) );
411
412     if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
413         /* More harmonic noise shaping for high bitrates or noisy input */
414         HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ),
415                 SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ),
416                 psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) );
417
418         /* Less harmonic noise shaping for less periodic signals */
419         HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ),
420             silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) );
421     } else {
422         HarmShapeGain_Q16 = 0;
423     }
424
425     /*************************/
426     /* Smooth over subframes */
427     /*************************/
428     for( k = 0; k < MAX_NB_SUBFR; k++ ) {
429         psShapeSt->HarmBoost_smth_Q16 =
430             silk_SMLAWB( psShapeSt->HarmBoost_smth_Q16,     HarmBoost_Q16     - psShapeSt->HarmBoost_smth_Q16,     SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
431         psShapeSt->HarmShapeGain_smth_Q16 =
432             silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
433         psShapeSt->Tilt_smth_Q16 =
434             silk_SMLAWB( psShapeSt->Tilt_smth_Q16,          Tilt_Q16          - psShapeSt->Tilt_smth_Q16,          SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
435
436         psEncCtrl->HarmBoost_Q14[ k ]     = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmBoost_smth_Q16,     2 );
437         psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 );
438         psEncCtrl->Tilt_Q14[ k ]          = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16,          2 );
439     }
440 }