Merge branch 'tmp_draft'
[opus.git] / silk / encode_pulses.c
1 /***********************************************************************
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 - Redistributions of source code must retain the above copyright notice,
7 this list of conditions and the following disclaimer.
8 - Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the
10 documentation and/or other materials provided with the distribution.
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the 
12 names of specific contributors, may be used to endorse or promote
13 products derived from this software without specific prior written
14 permission.
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 POSSIBILITY OF SUCH DAMAGE.
26 ***********************************************************************/
27
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "main.h"
33
34 /*********************************************/
35 /* Encode quantization indices of excitation */
36 /*********************************************/
37
38 static inline opus_int combine_and_check(    /* return ok                           */
39     opus_int         *pulses_comb,           /* O                                   */
40     const opus_int   *pulses_in,             /* I                                   */
41     opus_int         max_pulses,             /* I    max value for sum of pulses    */
42     opus_int         len                     /* I    number of output values        */
43 )
44 {
45     opus_int k, sum;
46
47     for( k = 0; k < len; k++ ) {
48         sum = pulses_in[ 2 * k ] + pulses_in[ 2 * k + 1 ];
49         if( sum > max_pulses ) {
50             return 1;
51         }
52         pulses_comb[ k ] = sum;
53     }
54
55     return 0;
56 }
57
58 /* Encode quantization indices of excitation */
59 void silk_encode_pulses(
60     ec_enc                      *psRangeEnc,                    /* I/O  compressor data structure                   */
61     const opus_int              signalType,                     /* I    Signal type                                 */
62     const opus_int              quantOffsetType,                /* I    quantOffsetType                             */
63     opus_int8                   pulses[],                       /* I    quantization indices                        */
64     const opus_int              frame_length                    /* I    Frame length                                */
65 )
66 {
67     opus_int   i, k, j, iter, bit, nLS, scale_down, RateLevelIndex = 0;
68     opus_int32 abs_q, minSumBits_Q5, sumBits_Q5;
69     opus_int   abs_pulses[ MAX_FRAME_LENGTH ];
70     opus_int   sum_pulses[ MAX_NB_SHELL_BLOCKS ];
71     opus_int   nRshifts[   MAX_NB_SHELL_BLOCKS ];
72     opus_int   pulses_comb[ 8 ];
73     opus_int   *abs_pulses_ptr;
74     const opus_int8 *pulses_ptr;
75     const opus_uint8 *cdf_ptr;
76     const opus_uint8 *nBits_ptr;
77
78     silk_memset( pulses_comb, 0, 8 * sizeof( opus_int ) ); /* Fixing Valgrind reported problem*/
79
80     /****************************/
81     /* Prepare for shell coding */
82     /****************************/
83     /* Calculate number of shell blocks */
84     silk_assert( 1 << LOG2_SHELL_CODEC_FRAME_LENGTH == SHELL_CODEC_FRAME_LENGTH );
85     iter = silk_RSHIFT( frame_length, LOG2_SHELL_CODEC_FRAME_LENGTH );
86     if( iter * SHELL_CODEC_FRAME_LENGTH < frame_length ) {
87         silk_assert( frame_length == 12 * 10 ); /* Make sure only happens for 10 ms @ 12 kHz */
88         iter++;
89         silk_memset( &pulses[ frame_length ], 0, SHELL_CODEC_FRAME_LENGTH * sizeof(opus_int8));
90     }
91
92     /* Take the absolute value of the pulses */
93     for( i = 0; i < iter * SHELL_CODEC_FRAME_LENGTH; i+=4 ) {
94         abs_pulses[i+0] = ( opus_int )silk_abs( pulses[ i + 0 ] );
95         abs_pulses[i+1] = ( opus_int )silk_abs( pulses[ i + 1 ] );
96         abs_pulses[i+2] = ( opus_int )silk_abs( pulses[ i + 2 ] );
97         abs_pulses[i+3] = ( opus_int )silk_abs( pulses[ i + 3 ] );
98     }
99
100     /* Calc sum pulses per shell code frame */
101     abs_pulses_ptr = abs_pulses;
102     for( i = 0; i < iter; i++ ) {
103         nRshifts[ i ] = 0;
104
105         while( 1 ) {
106             /* 1+1 -> 2 */
107             scale_down = combine_and_check( pulses_comb, abs_pulses_ptr, silk_max_pulses_table[ 0 ], 8 );
108             /* 2+2 -> 4 */
109             scale_down += combine_and_check( pulses_comb, pulses_comb, silk_max_pulses_table[ 1 ], 4 );
110             /* 4+4 -> 8 */
111             scale_down += combine_and_check( pulses_comb, pulses_comb, silk_max_pulses_table[ 2 ], 2 );
112             /* 8+8 -> 16 */
113             scale_down += combine_and_check( &sum_pulses[ i ], pulses_comb, silk_max_pulses_table[ 3 ], 1 );
114
115             if( scale_down ) {
116                 /* We need to downscale the quantization signal */
117                 nRshifts[ i ]++;
118                 for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) {
119                     abs_pulses_ptr[ k ] = silk_RSHIFT( abs_pulses_ptr[ k ], 1 );
120                 }
121             } else {
122                 /* Jump out of while(1) loop and go to next shell coding frame */
123                 break;
124             }
125         }
126         abs_pulses_ptr += SHELL_CODEC_FRAME_LENGTH;
127     }
128
129     /**************/
130     /* Rate level */
131     /**************/
132     /* find rate level that leads to fewest bits for coding of pulses per block info */
133     minSumBits_Q5 = silk_int32_MAX;
134     for( k = 0; k < N_RATE_LEVELS - 1; k++ ) {
135         nBits_ptr  = silk_pulses_per_block_BITS_Q5[ k ];
136         sumBits_Q5 = silk_rate_levels_BITS_Q5[ signalType >> 1 ][ k ];
137         for( i = 0; i < iter; i++ ) {
138             if( nRshifts[ i ] > 0 ) {
139                 sumBits_Q5 += nBits_ptr[ MAX_PULSES + 1 ];
140             } else {
141                 sumBits_Q5 += nBits_ptr[ sum_pulses[ i ] ];
142             }
143         }
144         if( sumBits_Q5 < minSumBits_Q5 ) {
145             minSumBits_Q5 = sumBits_Q5;
146             RateLevelIndex = k;
147         }
148     }
149     ec_enc_icdf( psRangeEnc, RateLevelIndex, silk_rate_levels_iCDF[ signalType >> 1 ], 8 );
150
151     /***************************************************/
152     /* Sum-Weighted-Pulses Encoding                    */
153     /***************************************************/
154     cdf_ptr = silk_pulses_per_block_iCDF[ RateLevelIndex ];
155     for( i = 0; i < iter; i++ ) {
156         if( nRshifts[ i ] == 0 ) {
157             ec_enc_icdf( psRangeEnc, sum_pulses[ i ], cdf_ptr, 8 );
158         } else {
159             ec_enc_icdf( psRangeEnc, MAX_PULSES + 1, cdf_ptr, 8 );
160             for( k = 0; k < nRshifts[ i ] - 1; k++ ) {
161                 ec_enc_icdf( psRangeEnc, MAX_PULSES + 1, silk_pulses_per_block_iCDF[ N_RATE_LEVELS - 1 ], 8 );
162             }
163             ec_enc_icdf( psRangeEnc, sum_pulses[ i ], silk_pulses_per_block_iCDF[ N_RATE_LEVELS - 1 ], 8 );
164         }
165     }
166
167     /******************/
168     /* Shell Encoding */
169     /******************/
170     for( i = 0; i < iter; i++ ) {
171         if( sum_pulses[ i ] > 0 ) {
172             silk_shell_encoder( psRangeEnc, &abs_pulses[ i * SHELL_CODEC_FRAME_LENGTH ] );
173         }
174     }
175
176     /****************/
177     /* LSB Encoding */
178     /****************/
179     for( i = 0; i < iter; i++ ) {
180         if( nRshifts[ i ] > 0 ) {
181             pulses_ptr = &pulses[ i * SHELL_CODEC_FRAME_LENGTH ];
182             nLS = nRshifts[ i ] - 1;
183             for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) {
184                 abs_q = (opus_int8)silk_abs( pulses_ptr[ k ] );
185                 for( j = nLS; j > 0; j-- ) {
186                     bit = silk_RSHIFT( abs_q, j ) & 1;
187                     ec_enc_icdf( psRangeEnc, bit, silk_lsb_iCDF, 8 );
188                 }
189                 bit = abs_q & 1;
190                 ec_enc_icdf( psRangeEnc, bit, silk_lsb_iCDF, 8 );
191             }
192         }
193     }
194
195     /****************/
196     /* Encode signs */
197     /****************/
198     silk_encode_signs( psRangeEnc, pulses, frame_length, signalType, quantOffsetType, sum_pulses );
199 }