1 /* (C) 2007-2008 Jean-Marc Valin, CSIRO
4 Redistribution and use in source and binary forms, with or without
5 modification, are permitted provided that the following conditions
8 - Redistributions of source code must retain the above copyright
9 notice, this list of conditions and the following disclaimer.
11 - Redistributions in binary form must reproduce the above copyright
12 notice, this list of conditions and the following disclaimer in the
13 documentation and/or other materials provided with the distribution.
15 - Neither the name of the Xiph.org Foundation nor the names of its
16 contributors may be used to endorse or promote products derived from
17 this software without specific prior written permission.
19 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
23 CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 #include "os_support.h"
44 void exp_rotation(celt_norm_t *X, int len, int dir, int stride, int iter)
48 /* Equivalent to cos(.3) and sin(.3) */
49 c = QCONST16(0.95534,15);
50 s = dir*QCONST16(0.29552,15);
53 /* We could use MULT16_16_P15 instead of MULT16_16_Q15 for more accuracy,
54 but at this point, I really don't think it's necessary */
55 for (i=0;i<len-stride;i++)
60 X[i] = MULT16_16_Q15(c,x1) - MULT16_16_Q15(s,x2);
61 X[i+stride] = MULT16_16_Q15(c,x2) + MULT16_16_Q15(s,x1);
63 for (i=len-2*stride-1;i>=0;i--)
68 X[i] = MULT16_16_Q15(c,x1) - MULT16_16_Q15(s,x2);
69 X[i+stride] = MULT16_16_Q15(c,x2) + MULT16_16_Q15(s,x1);
75 const celt_word16_t sqrtC_1[2] = {QCONST16(1.f, 14), QCONST16(1.414214f, 14)};
78 /* Compute the amplitude (sqrt energy) in each of the bands */
79 void compute_band_energies(const CELTMode *m, const celt_sig_t *X, celt_ener_t *bank)
82 const celt_int16_t *eBands = m->eBands;
87 for (i=0;i<m->nbEBands;i++)
90 celt_word32_t maxval=0;
91 celt_word32_t sum = 0;
92 for (j=B*eBands[i];j<B*eBands[i+1];j++)
93 maxval = MAX32(maxval, ABS32(X[j*C+c]));
96 int shift = celt_ilog2(maxval)-10;
97 for (j=B*eBands[i];j<B*eBands[i+1];j++)
98 sum += VSHR32(X[j*C+c],shift)*VSHR32(X[j*C+c],shift);
99 /* We're adding one here to make damn sure we never end up with a pitch vector that's
100 larger than unity norm */
101 bank[i*C+c] = 1+VSHR32(EXTEND32(celt_sqrt(sum)),-shift);
105 /*printf ("%f ", bank[i*C+c]);*/
111 /* Normalise each band such that the energy is one. */
112 void normalise_bands(const CELTMode *m, const celt_sig_t *freq, celt_norm_t *X, const celt_ener_t *bank)
115 const celt_int16_t *eBands = m->eBands;
120 for (i=0;i<m->nbEBands;i++)
125 shift = celt_ilog2(bank[i*C+c])-13;
126 E = VSHR32(bank[i*C+c], shift);
128 g = DIV32_16(SHL32(Q15ONE,13),MULT16_16_Q14(E,sqrtC_1[C-1]));
131 for (j=B*eBands[i];j<B*eBands[i+1];j++)
132 X[j*C+c] = MULT16_16_Q14(VSHR32(freq[j*C+c],shift),g);
135 for (i=B*C*eBands[m->nbEBands];i<B*C*eBands[m->nbEBands+1];i++)
139 void renormalise_bands(const CELTMode *m, celt_norm_t *X)
142 VARDECL(celt_ener_t, tmpE);
143 VARDECL(celt_sig_t, freq);
145 ALLOC(tmpE, m->nbEBands*m->nbChannels, celt_ener_t);
146 ALLOC(freq, m->nbMdctBlocks*m->nbChannels*m->eBands[m->nbEBands+1], celt_sig_t);
147 for (i=0;i<m->nbMdctBlocks*m->nbChannels*m->eBands[m->nbEBands+1];i++)
148 freq[i] = SHL32(EXTEND32(X[i]), 10);
149 compute_band_energies(m, freq, tmpE);
150 normalise_bands(m, freq, X, tmpE);
154 /* Compute the amplitude (sqrt energy) in each of the bands */
155 void compute_band_energies(const CELTMode *m, const celt_sig_t *X, celt_ener_t *bank)
158 const celt_int16_t *eBands = m->eBands;
163 for (i=0;i<m->nbEBands;i++)
166 celt_word32_t sum = 1e-10;
167 for (j=B*eBands[i];j<B*eBands[i+1];j++)
168 sum += X[j*C+c]*X[j*C+c];
169 bank[i*C+c] = sqrt(sum);
170 /*printf ("%f ", bank[i*C+c]);*/
176 /* Normalise each band such that the energy is one. */
177 void normalise_bands(const CELTMode *m, const celt_sig_t *freq, celt_norm_t *X, const celt_ener_t *bank)
180 const celt_int16_t *eBands = m->eBands;
185 for (i=0;i<m->nbEBands;i++)
188 celt_word16_t g = 1.f/(1e-10+bank[i*C+c]*sqrt(C));
189 for (j=B*eBands[i];j<B*eBands[i+1];j++)
190 X[j*C+c] = freq[j*C+c]*g;
193 for (i=B*C*eBands[m->nbEBands];i<B*C*eBands[m->nbEBands+1];i++)
197 void renormalise_bands(const CELTMode *m, celt_norm_t *X)
199 VARDECL(celt_ener_t *tmpE);
201 ALLOC(tmpE, m->nbEBands*m->nbChannels, celt_ener_t);
202 compute_band_energies(m, X, tmpE);
203 normalise_bands(m, X, X, tmpE);
208 /* De-normalise the energy to produce the synthesis from the unit-energy bands */
209 void denormalise_bands(const CELTMode *m, const celt_norm_t *X, celt_sig_t *freq, const celt_ener_t *bank)
212 const celt_int16_t *eBands = m->eBands;
216 celt_fatal("denormalise_bands() not implemented for >2 channels");
219 for (i=0;i<m->nbEBands;i++)
222 celt_word32_t g = MULT16_32_Q14(sqrtC_1[C-1],bank[i*C+c]);
223 for (j=B*eBands[i];j<B*eBands[i+1];j++)
224 freq[j*C+c] = MULT16_32_Q14(X[j*C+c], g);
227 for (i=B*C*eBands[m->nbEBands];i<B*C*eBands[m->nbEBands+1];i++)
232 /* Compute the best gain for each "pitch band" */
233 void compute_pitch_gain(const CELTMode *m, const celt_norm_t *X, const celt_norm_t *P, celt_pgain_t *gains)
236 const celt_int16_t *pBands = m->pBands;
237 B = m->nbMdctBlocks*m->nbChannels;
239 for (i=0;i<m->nbPBands;i++)
241 celt_word32_t Sxy=0, Sxx=0;
243 /* We know we're not going to overflow because Sxx can't be more than 1 (Q28) */
244 for (j=B*pBands[i];j<B*pBands[i+1];j++)
246 Sxy = MAC16_16(Sxy, X[j], P[j]);
247 Sxx = MAC16_16(Sxx, X[j], X[j]);
249 /* No negative gain allowed */
252 /* Not sure how that would happen, just making sure */
255 /* We need to be a bit conservative (multiply gain by 0.9), otherwise the
256 residual doesn't quantise well */
257 Sxy = MULT16_32_Q15(QCONST16(.9f, 15), Sxy);
259 gains[i] = DIV32_16(Sxy,ADD32(SHR32(Sxx, PGAIN_SHIFT),EPSILON));
260 /*printf ("%f ", 1-sqrt(1-gain*gain));*/
264 for (i=0;i<m->nbPBands;i++)
265 printf ("%f ", 1-sqrt(1-gains[i]*gains[i]));
270 /* Apply the (quantised) gain to each "pitch band" */
271 void pitch_quant_bands(const CELTMode *m, celt_norm_t *P, const celt_pgain_t *gains)
274 const celt_int16_t *pBands = m->pBands;
275 B = m->nbMdctBlocks*m->nbChannels;
276 for (i=0;i<m->nbPBands;i++)
279 for (j=B*pBands[i];j<B*pBands[i+1];j++)
280 P[j] = MULT16_16_Q15(gains[i], P[j]);
281 /*printf ("%f ", gain);*/
283 for (i=B*pBands[m->nbPBands];i<B*pBands[m->nbPBands+1];i++)
288 /* Quantisation of the residual */
289 void quant_bands(const CELTMode *m, celt_norm_t *X, celt_norm_t *P, celt_mask_t *W, int total_bits, ec_enc *enc)
292 const celt_int16_t *eBands = m->eBands;
294 VARDECL(celt_norm_t, norm);
295 VARDECL(int, pulses);
296 VARDECL(int, offsets);
299 B = m->nbMdctBlocks*m->nbChannels;
301 ALLOC(norm, B*eBands[m->nbEBands+1], celt_norm_t);
302 ALLOC(pulses, m->nbEBands, int);
303 ALLOC(offsets, m->nbEBands, int);
305 for (i=0;i<m->nbEBands;i++)
307 /* Use a single-bit margin to guard against overrunning (make sure it's enough) */
308 bits = total_bits - ec_enc_tell(enc, 0) - 1;
309 compute_allocation(m, offsets, bits, pulses);
311 /*printf("bits left: %d\n", bits);
312 for (i=0;i<m->nbEBands;i++)
313 printf ("%d ", pulses[i]);
315 /*printf ("%d %d\n", ec_enc_tell(enc, 0), compute_allocation(m, m->nbPulses));*/
316 for (i=0;i<m->nbEBands;i++)
321 n = SHL16(celt_sqrt(B*(eBands[i+1]-eBands[i])),11);
323 /* If pitch isn't available, use intra-frame prediction */
324 if (eBands[i] >= m->pitchEnd || q<=0)
329 intra_fold(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), norm, P+B*eBands[i], B, eBands[i], eBands[m->nbEBands+1]);
331 intra_prediction(X+B*eBands[i], W+B*eBands[i], B*(eBands[i+1]-eBands[i]), q, norm, P+B*eBands[i], B, eBands[i], enc);
333 alpha = QCONST16(.7f,15);
338 int nb_rotations = (B*(eBands[i+1]-eBands[i])+4*q)/(8*q);
339 exp_rotation(P+B*eBands[i], B*(eBands[i+1]-eBands[i]), -1, B, nb_rotations);
340 exp_rotation(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), -1, B, nb_rotations);
341 alg_quant(X+B*eBands[i], W+B*eBands[i], B*(eBands[i+1]-eBands[i]), q, P+B*eBands[i], alpha, enc);
342 exp_rotation(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), 1, B, nb_rotations);
344 for (j=B*eBands[i];j<B*eBands[i+1];j++)
345 norm[j] = MULT16_16_Q15(n,X[j]);
347 for (i=B*eBands[m->nbEBands];i<B*eBands[m->nbEBands+1];i++)
352 /* Decoding of the residual */
353 void unquant_bands(const CELTMode *m, celt_norm_t *X, celt_norm_t *P, int total_bits, ec_dec *dec)
356 const celt_int16_t *eBands = m->eBands;
358 VARDECL(celt_norm_t, norm);
359 VARDECL(int, pulses);
360 VARDECL(int, offsets);
363 B = m->nbMdctBlocks*m->nbChannels;
365 ALLOC(norm, B*eBands[m->nbEBands+1], celt_norm_t);
366 ALLOC(pulses, m->nbEBands, int);
367 ALLOC(offsets, m->nbEBands, int);
369 for (i=0;i<m->nbEBands;i++)
371 /* Use a single-bit margin to guard against overrunning (make sure it's enough) */
372 bits = total_bits - ec_dec_tell(dec, 0) - 1;
373 compute_allocation(m, offsets, bits, pulses);
375 for (i=0;i<m->nbEBands;i++)
380 n = SHL16(celt_sqrt(B*(eBands[i+1]-eBands[i])),11);
382 /* If pitch isn't available, use intra-frame prediction */
383 if (eBands[i] >= m->pitchEnd || q<=0)
388 intra_fold(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), norm, P+B*eBands[i], B, eBands[i], eBands[m->nbEBands+1]);
390 intra_unquant(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), q, norm, P+B*eBands[i], B, eBands[i], dec);
392 alpha = QCONST16(.7f,15);
397 int nb_rotations = (B*(eBands[i+1]-eBands[i])+4*q)/(8*q);
398 exp_rotation(P+B*eBands[i], B*(eBands[i+1]-eBands[i]), -1, B, nb_rotations);
399 alg_unquant(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), q, P+B*eBands[i], alpha, dec);
400 exp_rotation(X+B*eBands[i], B*(eBands[i+1]-eBands[i]), 1, B, nb_rotations);
402 for (j=B*eBands[i];j<B*eBands[i+1];j++)
403 norm[j] = MULT16_16_Q15(n,X[j]);
405 for (i=B*eBands[m->nbEBands];i<B*eBands[m->nbEBands+1];i++)
410 void stereo_mix(const CELTMode *m, celt_norm_t *X, const celt_ener_t *bank, int dir)
413 const celt_int16_t *eBands = m->eBands;
416 for (i=0;i<m->nbEBands;i++)
419 celt_word16_t left, right;
420 celt_word16_t a1, a2;
423 int shift = celt_ilog2(MAX32(bank[i*C], bank[i*C+1]))-13;
425 left = VSHR32(bank[i*C],shift);
426 right = VSHR32(bank[i*C+1],shift);
427 norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right));
428 a1 = DIV32_16(SHL32(EXTEND32(left),14),norm);
429 a2 = dir*DIV32_16(SHL32(EXTEND32(right),14),norm);
430 for (j=B*eBands[i];j<B*eBands[i+1];j++)
435 X[j*C] = MULT16_16_Q14(a1,l) + MULT16_16_Q14(a2,r);
436 X[j*C+1] = MULT16_16_Q14(a1,r) - MULT16_16_Q14(a2,l);
439 for (i=B*C*eBands[m->nbEBands];i<B*C*eBands[m->nbEBands+1];i++)