Avoid processing LPC coeffs beyond the given order in NEON optimizations
[opus.git] / doc / draft-ietf-codec-opus-update.xml
1 <?xml version="1.0" encoding="US-ASCII"?>
2 <!DOCTYPE rfc SYSTEM "rfc2629.dtd">
3 <?rfc toc="yes"?>
4 <?rfc tocompact="yes"?>
5 <?rfc tocdepth="3"?>
6 <?rfc tocindent="yes"?>
7 <?rfc symrefs="yes"?>
8 <?rfc sortrefs="yes"?>
9 <?rfc comments="yes"?>
10 <?rfc inline="yes"?>
11 <?rfc compact="yes"?>
12 <?rfc subcompact="no"?>
13 <rfc category="std" docName="draft-ietf-codec-opus-update-10"
14      ipr="trust200902" updates="6716">
15   <front>
16     <title abbrev="Opus Update">Updates to the Opus Audio Codec</title>
17
18 <author initials="JM" surname="Valin" fullname="Jean-Marc Valin">
19 <organization>Mozilla Corporation</organization>
20 <address>
21 <postal>
22 <street>331 E. Evelyn Avenue</street>
23 <city>Mountain View</city>
24 <region>CA</region>
25 <code>94041</code>
26 <country>USA</country>
27 </postal>
28 <phone>+1 650 903-0800</phone>
29 <email>jmvalin@jmvalin.ca</email>
30 </address>
31 </author>
32
33 <author initials="K." surname="Vos" fullname="Koen Vos">
34 <organization>vocTone</organization>
35 <address>
36 <postal>
37 <street></street>
38 <city></city>
39 <region></region>
40 <code></code>
41 <country></country>
42 </postal>
43 <phone></phone>
44 <email>koenvos74@gmail.com</email>
45 </address>
46 </author>
47
48
49
50     <date day="24" month="August" year="2017" />
51
52     <abstract>
53       <t>This document addresses minor issues that were found in the specification
54       of the Opus audio codec in RFC 6716. It updates the normative decoder implementation
55       included in the appendix of RFC 6716. The changes fixes real and potential security-related
56       issues, as well minor quality-related issues.</t>
57     </abstract>
58   </front>
59
60   <middle>
61     <section title="Introduction">
62       <t>This document addresses minor issues that were discovered in the reference
63       implementation of the Opus codec. Unlike most IETF specifications, Opus is defined
64       in <xref target="RFC6716">RFC 6716</xref> in terms of a normative reference
65       decoder implementation rather than from the associated text description.
66       That RFC includes the reference decoder implementation as Appendix A.
67       That's why only issues affecting the decoder are
68       listed here. An up-to-date implementation of the Opus encoder can be found at
69       <eref target="https://opus-codec.org/"/>.</t>
70     <t>
71       Some of the changes in this document update normative behaviour in a way that requires
72       new test vectors. The English text of the specification is unaffected, only
73       the C implementation is. The updated specification remains fully compatible with
74       the original specification.
75     </t>
76
77     <t>
78     Note: due to RFC formatting conventions, lines exceeding the column width
79     in the patch are split using a backslash character. The backslashes
80     at the end of a line and the white space at the beginning
81     of the following line are not part of the patch. A properly formatted patch
82     including all changes is available at
83     <eref target="https://www.ietf.org/proceedings/98/slides/materials-98-codec-opus-update-00.patch"/>
84     and has a SHA-1 hash of 029e3aa88fc342c91e67a21e7bfbc9458661cd5f.
85     </t>
86
87     </section>
88
89     <section title="Terminology">
90       <t>The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
91       "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
92       document are to be interpreted as described in <xref
93       target="RFC2119">RFC 2119</xref>.</t>
94     </section>
95
96     <section title="Stereo State Reset in SILK">
97       <t>The reference implementation does not reinitialize the stereo state
98       during a mode switch. The old stereo memory can produce a brief impulse
99       (i.e. single sample) in the decoded audio. This can be fixed by changing
100       silk/dec_API.c at line 72:
101     </t>
102 <figure>
103 <artwork><![CDATA[
104 <CODE BEGINS>
105      for( n = 0; n < DECODER_NUM_CHANNELS; n++ ) {
106          ret  = silk_init_decoder( &channel_state[ n ] );
107      }
108 +    silk_memset(&((silk_decoder *)decState)->sStereo, 0,
109 +                sizeof(((silk_decoder *)decState)->sStereo));
110 +    /* Not strictly needed, but it's cleaner that way */
111 +    ((silk_decoder *)decState)->prev_decode_only_middle = 0;
112  
113      return ret;
114  }
115 <CODE ENDS>
116 ]]></artwork>
117 </figure>
118      <t>
119      This change affects the normative output of the decoder, but the
120      amount of change is within the tolerance and too small to make the testvector check fail.
121       </t>
122     </section>
123
124     <section anchor="padding" title="Parsing of the Opus Packet Padding">
125       <t>It was discovered that some invalid packets of very large size could trigger
126       an out-of-bounds read in the Opus packet parsing code responsible for padding.
127       This is due to an integer overflow if the signaled padding exceeds 2^31-1 bytes
128       (the actual packet may be smaller). The code can be fixed by decrementing the
129       (signed) len value, instead of incrementing a separate padding counter.
130       This is done by applying the following changes at line 596 of src/opus_decoder.c:
131     </t>
132 <figure>
133 <artwork><![CDATA[
134 <CODE BEGINS>
135        /* Padding flag is bit 6 */
136        if (ch&0x40)
137        {
138 -         int padding=0;
139           int p;
140           do {
141              if (len<=0)
142                 return OPUS_INVALID_PACKET;
143              p = *data++;
144              len--;
145 -            padding += p==255 ? 254: p;
146 +            len -= p==255 ? 254: p;
147           } while (p==255);
148 -         len -= padding;
149        }
150 <CODE ENDS>
151 ]]></artwork>
152 </figure>
153       <t>This packet parsing issue is limited to reading memory up
154          to about 60 kB beyond the compressed buffer. This can only be triggered
155          by a compressed packet more than about 16 MB long, so it's not a problem
156          for RTP. In theory, it could crash a file
157          decoder (e.g. Opus in Ogg) if the memory just after the incoming packet
158          is out-of-range, but our attempts to trigger such a crash in a production
159          application built using an affected version of the Opus decoder failed.</t>
160     </section>
161
162     <section anchor="resampler" title="Resampler buffer">
163       <t>The SILK resampler had the following issues:
164         <list style="numbers">
165     <t>The calls to memcpy() were using sizeof(opus_int32), but the type of the
166         local buffer was opus_int16.</t>
167     <t>Because the size was wrong, this potentially allowed the source
168         and destination regions of the memcpy() to overlap on the copy from "buf" to "buf".
169           We believe that nSamplesIn (number of input samples) is at least fs_in_khZ (sampling rate in kHz),
170           which is at least 8.
171        Since RESAMPLER_ORDER_FIR_12 is only 8, that should not be a problem once
172        the type size is fixed.</t>
173           <t>The size of the buffer used RESAMPLER_MAX_BATCH_SIZE_IN, but the
174         data stored in it was actually twice the input batch size
175         (nSamplesIn&lt;&lt;1).</t>
176       </list></t>
177     <t>The code can be fixed by applying the following changes to line 78 of silk/resampler_private_IIR_FIR.c:
178     </t>
179 <figure>
180 <artwork><![CDATA[
181 <CODE BEGINS>
182  )
183  {
184      silk_resampler_state_struct *S = \
185 (silk_resampler_state_struct *)SS;
186      opus_int32 nSamplesIn;
187      opus_int32 max_index_Q16, index_increment_Q16;
188 -    opus_int16 buf[ RESAMPLER_MAX_BATCH_SIZE_IN + \
189 RESAMPLER_ORDER_FIR_12 ];
190 +    opus_int16 buf[ 2*RESAMPLER_MAX_BATCH_SIZE_IN + \
191 RESAMPLER_ORDER_FIR_12 ];
192  
193      /* Copy buffered samples to start of buffer */
194 -    silk_memcpy( buf, S->sFIR, RESAMPLER_ORDER_FIR_12 \
195 * sizeof( opus_int32 ) );
196 +    silk_memcpy( buf, S->sFIR, RESAMPLER_ORDER_FIR_12 \
197 * sizeof( opus_int16 ) );
198  
199      /* Iterate over blocks of frameSizeIn input samples */
200      index_increment_Q16 = S->invRatio_Q16;
201      while( 1 ) {
202          nSamplesIn = silk_min( inLen, S->batchSize );
203  
204          /* Upsample 2x */
205          silk_resampler_private_up2_HQ( S->sIIR, &buf[ \
206 RESAMPLER_ORDER_FIR_12 ], in, nSamplesIn );
207  
208          max_index_Q16 = silk_LSHIFT32( nSamplesIn, 16 + 1 \
209 );         /* + 1 because 2x upsampling */
210          out = silk_resampler_private_IIR_FIR_INTERPOL( out, \
211 buf, max_index_Q16, index_increment_Q16 );
212          in += nSamplesIn;
213          inLen -= nSamplesIn;
214  
215          if( inLen > 0 ) {
216              /* More iterations to do; copy last part of \
217 filtered signal to beginning of buffer */
218 -            silk_memcpy( buf, &buf[ nSamplesIn << 1 ], \
219 RESAMPLER_ORDER_FIR_12 * sizeof( opus_int32 ) );
220 +            silk_memmove( buf, &buf[ nSamplesIn << 1 ], \
221 RESAMPLER_ORDER_FIR_12 * sizeof( opus_int16 ) );
222          } else {
223              break;
224          }
225      }
226  
227      /* Copy last part of filtered signal to the state for \
228 the next call */
229 -    silk_memcpy( S->sFIR, &buf[ nSamplesIn << 1 ], \
230 RESAMPLER_ORDER_FIR_12 * sizeof( opus_int32 ) );
231 +    silk_memcpy( S->sFIR, &buf[ nSamplesIn << 1 ], \
232 RESAMPLER_ORDER_FIR_12 * sizeof( opus_int16 ) );
233  }
234 <CODE ENDS>
235 ]]></artwork>
236 </figure>
237     </section>
238
239     <section title="Integer wrap-around in inverse gain computation">
240       <t>
241         It was discovered through decoder fuzzing that some bitstreams could produce
242         integer values exceeding 32-bits in LPC_inverse_pred_gain_QA(), causing
243         a wrap-around. The C standard considers
244         this behavior as undefined. The following patch to line 87 of silk/LPC_inv_pred_gain.c
245         detects values that do not fit in a 32-bit integer and considers the corresponding filters unstable:
246       </t>
247 <figure>
248 <artwork><![CDATA[
249 <CODE BEGINS>
250          /* Update AR coefficient */
251          for( n = 0; n < k; n++ ) {
252 -            tmp_QA = Aold_QA[ n ] - MUL32_FRAC_Q( \
253 Aold_QA[ k - n - 1 ], rc_Q31, 31 );
254 -            Anew_QA[ n ] = MUL32_FRAC_Q( tmp_QA, rc_mult2 , mult2Q );
255 +            opus_int64 tmp64;
256 +            tmp_QA = silk_SUB_SAT32( Aold_QA[ n ], MUL32_FRAC_Q( \
257 Aold_QA[ k - n - 1 ], rc_Q31, 31 ) );
258 +            tmp64 = silk_RSHIFT_ROUND64( silk_SMULL( tmp_QA, \
259 rc_mult2 ), mult2Q);
260 +            if( tmp64 > silk_int32_MAX || tmp64 < silk_int32_MIN ) {
261 +               return 0;
262 +            }
263 +            Anew_QA[ n ] = ( opus_int32 )tmp64;
264          }
265 <CODE ENDS>
266 ]]></artwork>
267 </figure>
268     </section>
269
270     <section title="Integer wrap-around in LSF decoding" anchor="lsf_overflow">
271       <t>
272         It was discovered -- also from decoder fuzzing -- that an integer wrap-around could
273         occur when decoding bitstreams with extremely large values for the high LSF parameters.
274         The end result of the wrap-around is an illegal read access on the stack, which
275         the authors do not believe is exploitable but should nonetheless be fixed. The following
276         patch to line 137 of silk/NLSF_stabilize.c prevents the problem:
277       </t>
278 <figure>
279 <artwork><![CDATA[
280 <CODE BEGINS>
281            /* Keep delta_min distance between the NLSFs */
282          for( i = 1; i < L; i++ )
283 -            NLSF_Q15[i] = silk_max_int( NLSF_Q15[i], \
284 NLSF_Q15[i-1] + NDeltaMin_Q15[i] );
285 +            NLSF_Q15[i] = silk_max_int( NLSF_Q15[i], \
286 silk_ADD_SAT16( NLSF_Q15[i-1], NDeltaMin_Q15[i] ) );
287  
288          /* Last NLSF should be no higher than 1 - NDeltaMin[L] */
289 <CODE ENDS>
290 ]]></artwork>
291 </figure>
292
293     </section>
294
295     <section title="Cap on Band Energy">
296       <t>On extreme bit-streams, it is possible for log-domain band energy levels
297         to exceed the maximum single-precision floating point value once converted
298         to a linear scale. This would later cause the decoded values to be NaN (not a number),
299         possibly causing problems in the software using the PCM values. This can be
300         avoided with the following patch to line 552 of celt/quant_bands.c:
301       </t>
302 <figure>
303 <artwork><![CDATA[
304 <CODE BEGINS>
305        {
306           opus_val16 lg = ADD16(oldEBands[i+c*m->nbEBands],
307                           SHL16((opus_val16)eMeans[i],6));
308 +         lg = MIN32(QCONST32(32.f, 16), lg);
309           eBands[i+c*m->nbEBands] = PSHR32(celt_exp2(lg),4);
310        }
311        for (;i<m->nbEBands;i++)
312 <CODE ENDS>
313 ]]></artwork>
314 </figure>
315     </section>
316
317     <section title="Hybrid Folding" anchor="folding">
318       <t>When encoding in hybrid mode at low bitrate, we sometimes only have
319         enough bits to code a single CELT band (8 - 9.6 kHz). When that happens,
320         the second band (CELT band 18, from 9.6 to 12 kHz) cannot use folding
321         because it is wider than the amount already coded, and falls back to
322         white noise. Because it can also happen on transients (e.g. stops), it
323         can cause audible pre-echo.
324       </t>
325       <t>
326         To address the issue, we change the folding behavior so that it is
327         never forced to fall back to LCG due to the first band not containing
328         enough coefficients to fold onto the second band. This
329         is achieved by simply repeating part of the first band in the folding
330         of the second band. This changes the code in celt/bands.c around line 1237:
331       </t>
332 <figure>
333 <artwork><![CDATA[
334 <CODE BEGINS>
335           b = 0;
336        }
337  
338 -      if (resynth && M*eBands[i]-N >= M*eBands[start] && \
339 (update_lowband || lowband_offset==0))
340 +      if (resynth && (M*eBands[i]-N >= M*eBands[start] || \
341 i==start+1) && (update_lowband || lowband_offset==0))
342              lowband_offset = i;
343  
344 +      if (i == start+1)
345 +      {
346 +         int n1, n2;
347 +         int offset;
348 +         n1 = M*(eBands[start+1]-eBands[start]);
349 +         n2 = M*(eBands[start+2]-eBands[start+1]);
350 +         offset = M*eBands[start];
351 +         /* Duplicate enough of the first band folding data to \
352 be able to fold the second band.
353 +            Copies no data for CELT-only mode. */
354 +         OPUS_COPY(&norm[offset+n1], &norm[offset+2*n1 - n2], n2-n1);
355 +         if (C==2)
356 +            OPUS_COPY(&norm2[offset+n1], &norm2[offset+2*n1 - n2], \
357 n2-n1);
358 +      }
359 +
360        tf_change = tf_res[i];
361        if (i>=m->effEBands)
362        {
363 <CODE ENDS>
364 ]]></artwork>
365 </figure>
366
367       <t>
368        as well as line 1260:
369       </t>
370
371 <figure>
372 <artwork><![CDATA[
373 <CODE BEGINS>
374           fold_start = lowband_offset;
375           while(M*eBands[--fold_start] > effective_lowband);
376           fold_end = lowband_offset-1;
377 -         while(M*eBands[++fold_end] < effective_lowband+N);
378 +         while(++fold_end < i && M*eBands[fold_end] < \
379 effective_lowband+N);
380           x_cm = y_cm = 0;
381           fold_i = fold_start; do {
382             x_cm |= collapse_masks[fold_i*C+0];
383
384 <CODE ENDS>
385 ]]></artwork>
386 </figure>
387       <t>
388         The fix does not impact compatibility, because the improvement does
389         not depend on the encoder doing anything special. There is also no
390         reasonable way for an encoder to use the original behavior to
391         improve quality over the proposed change.
392       </t>
393     </section>
394
395     <section title="Downmix to Mono" anchor="stereo">
396       <t>The last issue is not strictly a bug, but it is an issue that has been reported
397       when downmixing an Opus decoded stream to mono, whether this is done inside the decoder
398       or as a post-processing step on the stereo decoder output. Opus intensity stereo allows
399       optionally coding the two channels 180-degrees out of phase on a per-band basis.
400       This provides better stereo quality than forcing the two channels to be in phase,
401       but when the output is downmixed to mono, the energy in the affected bands is cancelled
402       sometimes resulting in audible artifacts.
403       </t>
404       <t>As a work-around for this issue, the decoder MAY choose not to apply the 180-degree
405       phase shift. This can be useful when downmixing to mono inside or
406       outside of the decoder (e.g. user-controllable).
407       </t>
408     </section>
409
410
411     <section title="New Test Vectors">
412       <t>Changes in <xref target="folding"/> and <xref target="stereo"/> have
413         sufficient impact on the testvectors to make them fail. For this reason,
414         this document also updates the Opus test vectors. The new test vectors now
415         include two decoded outputs for the same bitstream. The outputs with
416         suffix 'm' do not apply the CELT 180-degree phase shift as allowed in
417         <xref target="stereo"/>, while the outputs without the suffix do. An
418         implementation is compliant as long as it passes either set of vectors.
419       </t>
420       <t>
421         Any Opus implementation
422         that passes either the original test vectors from <xref target="RFC6716">RFC 6716</xref>
423         or one of the new sets of test vectors is compliant with the Opus specification. However, newer implementations
424         SHOULD be based on the new test vectors rather than the old ones.
425       </t>
426       <t>The new test vectors are located at
427         <eref target="https://www.ietf.org/proceedings/98/slides/materials-98-codec-opus-newvectors-00.tar.gz"/>.
428         The SHA-1 hashes of the test vectors are:
429 <figure>
430 <artwork>
431 <![CDATA[
432 e49b2862ceec7324790ed8019eb9744596d5be01  testvector01.bit
433 b809795ae1bcd606049d76de4ad24236257135e0  testvector02.bit
434 e0c4ecaeab44d35a2f5b6575cd996848e5ee2acc  testvector03.bit
435 a0f870cbe14ebb71fa9066ef3ee96e59c9a75187  testvector04.bit
436 9b3d92b48b965dfe9edf7b8a85edd4309f8cf7c8  testvector05.bit
437 28e66769ab17e17f72875283c14b19690cbc4e57  testvector06.bit
438 bacf467be3215fc7ec288f29e2477de1192947a6  testvector07.bit
439 ddbe08b688bbf934071f3893cd0030ce48dba12f  testvector08.bit
440 3932d9d61944dab1201645b8eeaad595d5705ecb  testvector09.bit
441 521eb2a1e0cc9c31b8b740673307c2d3b10c1900  testvector10.bit
442 6bc8f3146fcb96450c901b16c3d464ccdf4d5d96  testvector11.bit
443 338c3f1b4b97226bc60bc41038becbc6de06b28f  testvector12.bit
444 f5ef93884da6a814d311027918e9afc6f2e5c2c8  testvector01.dec
445 48ac1ff1995250a756e1e17bd32acefa8cd2b820  testvector02.dec
446 d15567e919db2d0e818727092c0af8dd9df23c95  testvector03.dec
447 1249dd28f5bd1e39a66fd6d99449dca7a8316342  testvector04.dec
448 b85675d81deef84a112c466cdff3b7aaa1d2fc76  testvector05.dec
449 55f0b191e90bfa6f98b50d01a64b44255cb4813e  testvector06.dec
450 61e8b357ab090b1801eeb578a28a6ae935e25b7b  testvector07.dec
451 a58539ee5321453b2ddf4c0f2500e856b3966862  testvector08.dec
452 bb96aad2cde188555862b7bbb3af6133851ef8f4  testvector09.dec
453 1b6cdf0413ac9965b16184b1bea129b5c0b2a37a  testvector10.dec
454 b1fff72b74666e3027801b29dbc48b31f80dee0d  testvector11.dec
455 98e09bbafed329e341c3b4052e9c4ba5fc83f9b1  testvector12.dec
456 1e7d984ea3fbb16ba998aea761f4893fbdb30157  testvector01m.dec
457 48ac1ff1995250a756e1e17bd32acefa8cd2b820  testvector02m.dec
458 d15567e919db2d0e818727092c0af8dd9df23c95  testvector03m.dec
459 1249dd28f5bd1e39a66fd6d99449dca7a8316342  testvector04m.dec
460 d70b0bad431e7d463bc3da49bd2d49f1c6d0a530  testvector05m.dec
461 6ac1648c3174c95fada565161a6c78bdbe59c77d  testvector06m.dec
462 fc5e2f709693738324fb4c8bdc0dad6dda04e713  testvector07m.dec
463 aad2ba397bf1b6a18e8e09b50e4b19627d479f00  testvector08m.dec
464 6feb7a7b9d7cdc1383baf8d5739e2a514bd0ba08  testvector09m.dec
465 1b6cdf0413ac9965b16184b1bea129b5c0b2a37a  testvector10m.dec
466 fd3d3a7b0dfbdab98d37ed9aa04b659b9fefbd18  testvector11m.dec
467 98e09bbafed329e341c3b4052e9c4ba5fc83f9b1  testvector12m.dec
468 ]]>
469 </artwork>
470 </figure>
471       Note that the decoder input bitstream files (.bit) are unchanged.
472       </t>
473     </section>
474
475     <section anchor="security" title="Security Considerations">
476       <t>This document fixes two security issues reported on Opus and that affect the
477         reference implementation in <xref target="RFC6716">RFC 6716</xref>: CVE-2013-0899
478         <eref target="https://nvd.nist.gov/vuln/detail/CVE-2013-0899"/>
479         and CVE-2017-0381 <eref target="https://nvd.nist.gov/vuln/detail/CVE-2017-0381"/>.
480         CVE- 2013-0899 theoretically could have caused an information leak. The leaked
481         information would have gone through the decoder process before being accessible
482         to the attacker. It is fixed by <xref target="padding"/>.
483         CVE-2017-0381 could have resulted in a 16-bit out-of-bounds read from a fixed
484         location.  It is fixed in <xref target="lsf_overflow"/>.
485         Beyond the two fixed CVEs, this document adds no new security considerations on top of
486         <xref target="RFC6716">RFC 6716</xref>.
487       </t>
488     </section>
489
490     <section anchor="IANA" title="IANA Considerations">
491       <t>This document makes no request of IANA.</t>
492
493       <t>Note to RFC Editor: this section may be removed on publication as an
494       RFC.</t>
495     </section>
496
497     <section anchor="Acknowledgements" title="Acknowledgements">
498       <t>We would like to thank Juri Aedla for reporting the issue with the parsing of
499       the Opus padding. Thanks to Felicia Lim for reporting the LSF integer overflow issue.
500       Also, thanks to Tina le Grand, Jonathan Lennox, and Mark Harris for their
501       feedback on this document.</t>
502     </section>
503   </middle>
504
505   <back>
506     <references title="Normative References">
507       <?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.2119.xml"?>
508       <?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.6716.xml"?>
509
510
511     </references>
512   </back>
513 </rfc>