SSE2 implementation of the PVQ search
[opus.git] / silk / x86 / VQ_WMat_EC_sse.c
1 /* Copyright (c) 2014, Cisco Systems, INC
2    Written by XiangMingZhu WeiZhou MinPeng YanWang
3
4    Redistribution and use in source and binary forms, with or without
5    modification, are permitted provided that the following conditions
6    are met:
7
8    - Redistributions of source code must retain the above copyright
9    notice, this list of conditions and the following disclaimer.
10
11    - Redistributions in binary form must reproduce the above copyright
12    notice, this list of conditions and the following disclaimer in the
13    documentation and/or other materials provided with the distribution.
14
15    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
19    OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
20    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
22    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
23    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include <xmmintrin.h>
33 #include <emmintrin.h>
34 #include <smmintrin.h>
35 #include "main.h"
36 #include "celt/x86/x86cpu.h"
37
38 /* Entropy constrained matrix-weighted VQ, hard-coded to 5-element vectors, for a single input data vector */
39 void silk_VQ_WMat_EC_sse4_1(
40     opus_int8                   *ind,                           /* O    index of best codebook vector               */
41     opus_int32                  *rate_dist_Q14,                 /* O    best weighted quant error + mu * rate       */
42     opus_int                    *gain_Q7,                       /* O    sum of absolute LTP coefficients            */
43     const opus_int16            *in_Q14,                        /* I    input vector to be quantized                */
44     const opus_int32            *W_Q18,                         /* I    weighting matrix                            */
45     const opus_int8             *cb_Q7,                         /* I    codebook                                    */
46     const opus_uint8            *cb_gain_Q7,                    /* I    codebook effective gain                     */
47     const opus_uint8            *cl_Q5,                         /* I    code length for each codebook vector        */
48     const opus_int              mu_Q9,                          /* I    tradeoff betw. weighted error and rate      */
49     const opus_int32            max_gain_Q7,                    /* I    maximum sum of absolute LTP coefficients    */
50     opus_int                    L                               /* I    number of vectors in codebook               */
51 )
52 {
53     opus_int   k, gain_tmp_Q7;
54     const opus_int8 *cb_row_Q7;
55     opus_int16 diff_Q14[ 5 ];
56     opus_int32 sum1_Q14, sum2_Q16;
57
58     __m128i C_tmp1, C_tmp2, C_tmp3, C_tmp4, C_tmp5;
59     /* Loop over codebook */
60     *rate_dist_Q14 = silk_int32_MAX;
61     cb_row_Q7 = cb_Q7;
62     for( k = 0; k < L; k++ ) {
63         gain_tmp_Q7 = cb_gain_Q7[k];
64
65         diff_Q14[ 0 ] = in_Q14[ 0 ] - silk_LSHIFT( cb_row_Q7[ 0 ], 7 );
66
67         C_tmp1 = OP_CVTEPI16_EPI32_M64( &in_Q14[ 1 ] );
68         C_tmp2 = OP_CVTEPI8_EPI32_M32( &cb_row_Q7[ 1 ] );
69         C_tmp2 = _mm_slli_epi32( C_tmp2, 7 );
70         C_tmp1 = _mm_sub_epi32( C_tmp1, C_tmp2 );
71
72         diff_Q14[ 1 ] = _mm_extract_epi16( C_tmp1, 0 );
73         diff_Q14[ 2 ] = _mm_extract_epi16( C_tmp1, 2 );
74         diff_Q14[ 3 ] = _mm_extract_epi16( C_tmp1, 4 );
75         diff_Q14[ 4 ] = _mm_extract_epi16( C_tmp1, 6 );
76
77         /* Weighted rate */
78         sum1_Q14 = silk_SMULBB( mu_Q9, cl_Q5[ k ] );
79
80         /* Penalty for too large gain */
81         sum1_Q14 = silk_ADD_LSHIFT32( sum1_Q14, silk_max( silk_SUB32( gain_tmp_Q7, max_gain_Q7 ), 0 ), 10 );
82
83         silk_assert( sum1_Q14 >= 0 );
84
85         /* first row of W_Q18 */
86         C_tmp3 = _mm_loadu_si128( (__m128i *)(&W_Q18[ 1 ] ) );
87         C_tmp4 = _mm_mul_epi32( C_tmp3, C_tmp1 );
88         C_tmp4 = _mm_srli_si128( C_tmp4, 2 );
89
90         C_tmp1 = _mm_shuffle_epi32( C_tmp1, _MM_SHUFFLE( 0, 3, 2, 1 ) ); /* shift right 4 bytes */
91         C_tmp3 = _mm_shuffle_epi32( C_tmp3, _MM_SHUFFLE( 0, 3, 2, 1 ) ); /* shift right 4 bytes */
92
93         C_tmp5 = _mm_mul_epi32( C_tmp3, C_tmp1 );
94         C_tmp5 = _mm_srli_si128( C_tmp5, 2 );
95
96         C_tmp5 = _mm_add_epi32( C_tmp4, C_tmp5 );
97         C_tmp5 = _mm_slli_epi32( C_tmp5, 1 );
98
99         C_tmp5 = _mm_add_epi32( C_tmp5, _mm_shuffle_epi32( C_tmp5, _MM_SHUFFLE( 0, 0, 0, 2 ) ) );
100         sum2_Q16 = _mm_cvtsi128_si32( C_tmp5 );
101
102         sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[  0 ], diff_Q14[ 0 ] );
103         sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16,    diff_Q14[ 0 ] );
104
105         /* second row of W_Q18 */
106         sum2_Q16 = silk_SMULWB(           W_Q18[  7 ], diff_Q14[ 2 ] );
107         sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[  8 ], diff_Q14[ 3 ] );
108         sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[  9 ], diff_Q14[ 4 ] );
109         sum2_Q16 = silk_LSHIFT( sum2_Q16, 1 );
110         sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[  6 ], diff_Q14[ 1 ] );
111         sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16,    diff_Q14[ 1 ] );
112
113         /* third row of W_Q18 */
114         sum2_Q16 = silk_SMULWB(           W_Q18[ 13 ], diff_Q14[ 3 ] );
115         sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 14 ], diff_Q14[ 4 ] );
116         sum2_Q16 = silk_LSHIFT( sum2_Q16, 1 );
117         sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 12 ], diff_Q14[ 2 ] );
118         sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16,    diff_Q14[ 2 ] );
119
120         /* fourth row of W_Q18 */
121         sum2_Q16 = silk_SMULWB(           W_Q18[ 19 ], diff_Q14[ 4 ] );
122         sum2_Q16 = silk_LSHIFT( sum2_Q16, 1 );
123         sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 18 ], diff_Q14[ 3 ] );
124         sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16,    diff_Q14[ 3 ] );
125
126         /* last row of W_Q18 */
127         sum2_Q16 = silk_SMULWB(           W_Q18[ 24 ], diff_Q14[ 4 ] );
128         sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16,    diff_Q14[ 4 ] );
129
130         silk_assert( sum1_Q14 >= 0 );
131
132         /* find best */
133         if( sum1_Q14 < *rate_dist_Q14 ) {
134             *rate_dist_Q14 = sum1_Q14;
135             *ind = (opus_int8)k;
136             *gain_Q7 = gain_tmp_Q7;
137         }
138
139         /* Go to next cbk vector */
140         cb_row_Q7 += LTP_ORDER;
141     }
142 }