1 /***********************************************************************
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
6 - Redistributions of source code must retain the above copyright notice,
7 this list of conditions and the following disclaimer.
8 - Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the
10 documentation and/or other materials provided with the distribution.
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
12 names of specific contributors, may be used to endorse or promote
13 products derived from this software without specific prior written
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 POSSIBILITY OF SUCH DAMAGE.
26 ***********************************************************************/
33 #include "stack_alloc.h"
38 opus_int32 sLPC_Q14[ MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH ];
39 opus_int32 RandState[ DECISION_DELAY ];
40 opus_int32 Q_Q10[ DECISION_DELAY ];
41 opus_int32 Xq_Q14[ DECISION_DELAY ];
42 opus_int32 Pred_Q15[ DECISION_DELAY ];
43 opus_int32 Shape_Q14[ DECISION_DELAY ];
44 opus_int32 sAR2_Q14[ MAX_SHAPE_LPC_ORDER ];
58 opus_int32 sLTP_shp_Q14;
59 opus_int32 LPC_exc_Q14;
62 typedef NSQ_sample_struct NSQ_sample_pair[ 2 ];
64 #if defined(MIPSr1_ASM)
65 #include "mips/NSQ_del_dec_mipsr1.h"
67 static OPUS_INLINE void silk_nsq_del_dec_scale_states(
68 const silk_encoder_state *psEncC, /* I Encoder State */
69 silk_nsq_state *NSQ, /* I/O NSQ state */
70 NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
71 const opus_int16 x16[], /* I Input */
72 opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */
73 const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */
74 opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
75 opus_int subfr, /* I Subframe number */
76 opus_int nStatesDelayedDecision, /* I Number of del dec states */
77 const opus_int LTP_scale_Q14, /* I LTP state scaling */
78 const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
79 const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
80 const opus_int signal_type, /* I Signal type */
81 const opus_int decisionDelay /* I Decision delay */
84 /******************************************/
85 /* Noise shape quantizer for one subframe */
86 /******************************************/
87 static OPUS_INLINE void silk_noise_shape_quantizer_del_dec(
88 silk_nsq_state *NSQ, /* I/O NSQ state */
89 NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
90 opus_int signalType, /* I Signal type */
91 const opus_int32 x_Q10[], /* I */
92 opus_int8 pulses[], /* O */
93 opus_int16 xq[], /* O */
94 opus_int32 sLTP_Q15[], /* I/O LTP filter state */
95 opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */
96 const opus_int16 a_Q12[], /* I Short term prediction coefs */
97 const opus_int16 b_Q14[], /* I Long term prediction coefs */
98 const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */
99 opus_int lag, /* I Pitch lag */
100 opus_int32 HarmShapeFIRPacked_Q14, /* I */
101 opus_int Tilt_Q14, /* I Spectral tilt */
102 opus_int32 LF_shp_Q14, /* I */
103 opus_int32 Gain_Q16, /* I */
104 opus_int Lambda_Q10, /* I */
105 opus_int offset_Q10, /* I */
106 opus_int length, /* I Input length */
107 opus_int subfr, /* I Subframe number */
108 opus_int shapingLPCOrder, /* I Shaping LPC filter order */
109 opus_int predictLPCOrder, /* I Prediction filter order */
110 opus_int warping_Q16, /* I */
111 opus_int nStatesDelayedDecision, /* I Number of states in decision tree */
112 opus_int *smpl_buf_idx, /* I Index to newest samples in buffers */
113 opus_int decisionDelay, /* I */
117 void silk_NSQ_del_dec_c(
118 const silk_encoder_state *psEncC, /* I/O Encoder State */
119 silk_nsq_state *NSQ, /* I/O NSQ state */
120 SideInfoIndices *psIndices, /* I/O Quantization Indices */
121 const opus_int16 x16[], /* I Input */
122 opus_int8 pulses[], /* O Quantized pulse signal */
123 const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */
124 const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */
125 const opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */
126 const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */
127 const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */
128 const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */
129 const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */
130 const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
131 const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */
132 const opus_int LTP_scale_Q14 /* I LTP state scaling */
135 opus_int i, k, lag, start_idx, LSF_interpolation_flag, Winner_ind, subfr;
136 opus_int last_smple_idx, smpl_buf_idx, decisionDelay;
137 const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13;
139 VARDECL( opus_int32, sLTP_Q15 );
140 VARDECL( opus_int16, sLTP );
141 opus_int32 HarmShapeFIRPacked_Q14;
143 opus_int32 RDmin_Q10, Gain_Q10;
144 VARDECL( opus_int32, x_sc_Q10 );
145 VARDECL( opus_int32, delayedGain_Q10 );
146 VARDECL( NSQ_del_dec_struct, psDelDec );
147 NSQ_del_dec_struct *psDD;
150 /* Set unvoiced lag to the previous one, overwrite later for voiced */
153 silk_assert( NSQ->prev_gain_Q16 != 0 );
155 /* Initialize delayed decision states */
156 ALLOC( psDelDec, psEncC->nStatesDelayedDecision, NSQ_del_dec_struct );
157 silk_memset( psDelDec, 0, psEncC->nStatesDelayedDecision * sizeof( NSQ_del_dec_struct ) );
158 for( k = 0; k < psEncC->nStatesDelayedDecision; k++ ) {
159 psDD = &psDelDec[ k ];
160 psDD->Seed = ( k + psIndices->Seed ) & 3;
161 psDD->SeedInit = psDD->Seed;
163 psDD->LF_AR_Q14 = NSQ->sLF_AR_shp_Q14;
164 psDD->Diff_Q14 = NSQ->sDiff_shp_Q14;
165 psDD->Shape_Q14[ 0 ] = NSQ->sLTP_shp_Q14[ psEncC->ltp_mem_length - 1 ];
166 silk_memcpy( psDD->sLPC_Q14, NSQ->sLPC_Q14, NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
167 silk_memcpy( psDD->sAR2_Q14, NSQ->sAR2_Q14, sizeof( NSQ->sAR2_Q14 ) );
170 offset_Q10 = silk_Quantization_Offsets_Q10[ psIndices->signalType >> 1 ][ psIndices->quantOffsetType ];
171 smpl_buf_idx = 0; /* index of oldest samples */
173 decisionDelay = silk_min_int( DECISION_DELAY, psEncC->subfr_length );
175 /* For voiced frames limit the decision delay to lower than the pitch lag */
176 if( psIndices->signalType == TYPE_VOICED ) {
177 for( k = 0; k < psEncC->nb_subfr; k++ ) {
178 decisionDelay = silk_min_int( decisionDelay, pitchL[ k ] - LTP_ORDER / 2 - 1 );
182 decisionDelay = silk_min_int( decisionDelay, lag - LTP_ORDER / 2 - 1 );
186 if( psIndices->NLSFInterpCoef_Q2 == 4 ) {
187 LSF_interpolation_flag = 0;
189 LSF_interpolation_flag = 1;
192 ALLOC( sLTP_Q15, psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 );
193 ALLOC( sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16 );
194 ALLOC( x_sc_Q10, psEncC->subfr_length, opus_int32 );
195 ALLOC( delayedGain_Q10, DECISION_DELAY, opus_int32 );
196 /* Set up pointers to start of sub frame */
197 pxq = &NSQ->xq[ psEncC->ltp_mem_length ];
198 NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length;
199 NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
201 for( k = 0; k < psEncC->nb_subfr; k++ ) {
202 A_Q12 = &PredCoef_Q12[ ( ( k >> 1 ) | ( 1 - LSF_interpolation_flag ) ) * MAX_LPC_ORDER ];
203 B_Q14 = <PCoef_Q14[ k * LTP_ORDER ];
204 AR_shp_Q13 = &AR_Q13[ k * MAX_SHAPE_LPC_ORDER ];
206 /* Noise shape parameters */
207 silk_assert( HarmShapeGain_Q14[ k ] >= 0 );
208 HarmShapeFIRPacked_Q14 = silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 );
209 HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 );
211 NSQ->rewhite_flag = 0;
212 if( psIndices->signalType == TYPE_VOICED ) {
217 if( ( k & ( 3 - silk_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) {
219 /* RESET DELAYED DECISIONS */
221 RDmin_Q10 = psDelDec[ 0 ].RD_Q10;
223 for( i = 1; i < psEncC->nStatesDelayedDecision; i++ ) {
224 if( psDelDec[ i ].RD_Q10 < RDmin_Q10 ) {
225 RDmin_Q10 = psDelDec[ i ].RD_Q10;
229 for( i = 0; i < psEncC->nStatesDelayedDecision; i++ ) {
230 if( i != Winner_ind ) {
231 psDelDec[ i ].RD_Q10 += ( silk_int32_MAX >> 4 );
232 silk_assert( psDelDec[ i ].RD_Q10 >= 0 );
236 /* Copy final part of signals from winner state to output and long-term filter states */
237 psDD = &psDelDec[ Winner_ind ];
238 last_smple_idx = smpl_buf_idx + decisionDelay;
239 for( i = 0; i < decisionDelay; i++ ) {
240 last_smple_idx = ( last_smple_idx - 1 ) & DECISION_DELAY_MASK;
241 pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 );
242 pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND(
243 silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], Gains_Q16[ 1 ] ), 14 ) );
244 NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDD->Shape_Q14[ last_smple_idx ];
250 /* Rewhiten with new A coefs */
251 start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2;
252 silk_assert( start_idx > 0 );
254 silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ],
255 A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder, psEncC->arch );
257 NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
258 NSQ->rewhite_flag = 1;
262 silk_nsq_del_dec_scale_states( psEncC, NSQ, psDelDec, x16, x_sc_Q10, sLTP, sLTP_Q15, k,
263 psEncC->nStatesDelayedDecision, LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType, decisionDelay );
265 silk_noise_shape_quantizer_del_dec( NSQ, psDelDec, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15,
266 delayedGain_Q10, A_Q12, B_Q14, AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ],
267 Gains_Q16[ k ], Lambda_Q10, offset_Q10, psEncC->subfr_length, subfr++, psEncC->shapingLPCOrder,
268 psEncC->predictLPCOrder, psEncC->warping_Q16, psEncC->nStatesDelayedDecision, &smpl_buf_idx, decisionDelay, psEncC->arch );
270 x16 += psEncC->subfr_length;
271 pulses += psEncC->subfr_length;
272 pxq += psEncC->subfr_length;
276 RDmin_Q10 = psDelDec[ 0 ].RD_Q10;
278 for( k = 1; k < psEncC->nStatesDelayedDecision; k++ ) {
279 if( psDelDec[ k ].RD_Q10 < RDmin_Q10 ) {
280 RDmin_Q10 = psDelDec[ k ].RD_Q10;
285 /* Copy final part of signals from winner state to output and long-term filter states */
286 psDD = &psDelDec[ Winner_ind ];
287 psIndices->Seed = psDD->SeedInit;
288 last_smple_idx = smpl_buf_idx + decisionDelay;
289 Gain_Q10 = silk_RSHIFT32( Gains_Q16[ psEncC->nb_subfr - 1 ], 6 );
290 for( i = 0; i < decisionDelay; i++ ) {
291 last_smple_idx = ( last_smple_idx - 1 ) & DECISION_DELAY_MASK;
292 pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 );
293 pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND(
294 silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], Gain_Q10 ), 8 ) );
295 NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDD->Shape_Q14[ last_smple_idx ];
297 silk_memcpy( NSQ->sLPC_Q14, &psDD->sLPC_Q14[ psEncC->subfr_length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
298 silk_memcpy( NSQ->sAR2_Q14, psDD->sAR2_Q14, sizeof( psDD->sAR2_Q14 ) );
301 NSQ->sLF_AR_shp_Q14 = psDD->LF_AR_Q14;
302 NSQ->sDiff_shp_Q14 = psDD->Diff_Q14;
303 NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ];
305 /* Save quantized speech signal */
306 /* DEBUG_STORE_DATA( enc.pcm, &NSQ->xq[psEncC->ltp_mem_length], psEncC->frame_length * sizeof( opus_int16 ) ) */
307 silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) );
308 silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) );
312 /******************************************/
313 /* Noise shape quantizer for one subframe */
314 /******************************************/
315 #ifndef OVERRIDE_silk_noise_shape_quantizer_del_dec
316 static OPUS_INLINE void silk_noise_shape_quantizer_del_dec(
317 silk_nsq_state *NSQ, /* I/O NSQ state */
318 NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
319 opus_int signalType, /* I Signal type */
320 const opus_int32 x_Q10[], /* I */
321 opus_int8 pulses[], /* O */
322 opus_int16 xq[], /* O */
323 opus_int32 sLTP_Q15[], /* I/O LTP filter state */
324 opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */
325 const opus_int16 a_Q12[], /* I Short term prediction coefs */
326 const opus_int16 b_Q14[], /* I Long term prediction coefs */
327 const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */
328 opus_int lag, /* I Pitch lag */
329 opus_int32 HarmShapeFIRPacked_Q14, /* I */
330 opus_int Tilt_Q14, /* I Spectral tilt */
331 opus_int32 LF_shp_Q14, /* I */
332 opus_int32 Gain_Q16, /* I */
333 opus_int Lambda_Q10, /* I */
334 opus_int offset_Q10, /* I */
335 opus_int length, /* I Input length */
336 opus_int subfr, /* I Subframe number */
337 opus_int shapingLPCOrder, /* I Shaping LPC filter order */
338 opus_int predictLPCOrder, /* I Prediction filter order */
339 opus_int warping_Q16, /* I */
340 opus_int nStatesDelayedDecision, /* I Number of states in decision tree */
341 opus_int *smpl_buf_idx, /* I Index to newest samples in buffers */
342 opus_int decisionDelay, /* I */
346 opus_int i, j, k, Winner_ind, RDmin_ind, RDmax_ind, last_smple_idx;
347 opus_int32 Winner_rand_state;
348 opus_int32 LTP_pred_Q14, LPC_pred_Q14, n_AR_Q14, n_LTP_Q14;
349 opus_int32 n_LF_Q14, r_Q10, rr_Q10, rd1_Q10, rd2_Q10, RDmin_Q10, RDmax_Q10;
350 opus_int32 q1_Q0, q1_Q10, q2_Q10, exc_Q14, LPC_exc_Q14, xq_Q14, Gain_Q10;
351 opus_int32 tmp1, tmp2, sLF_AR_shp_Q14;
352 opus_int32 *pred_lag_ptr, *shp_lag_ptr, *psLPC_Q14;
353 #ifdef silk_short_prediction_create_arch_coef
354 opus_int32 a_Q12_arch[MAX_LPC_ORDER];
357 VARDECL( NSQ_sample_pair, psSampleState );
358 NSQ_del_dec_struct *psDD;
359 NSQ_sample_struct *psSS;
362 /* We're getting desperate to hit the target -- pretend there's
363 no dithering to make hitting the target more likely. */
364 if (Lambda_Q10 > 3072) offset_Q10 = 0;
365 silk_assert( nStatesDelayedDecision > 0 );
366 ALLOC( psSampleState, nStatesDelayedDecision, NSQ_sample_pair );
368 shp_lag_ptr = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ];
369 pred_lag_ptr = &sLTP_Q15[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ];
370 Gain_Q10 = silk_RSHIFT( Gain_Q16, 6 );
372 #ifdef silk_short_prediction_create_arch_coef
373 silk_short_prediction_create_arch_coef(a_Q12_arch, a_Q12, predictLPCOrder);
376 for( i = 0; i < length; i++ ) {
377 /* Perform common calculations used in all states */
379 /* Long-term prediction */
380 if( signalType == TYPE_VOICED ) {
382 /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
384 LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ 0 ], b_Q14[ 0 ] );
385 LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -1 ], b_Q14[ 1 ] );
386 LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -2 ], b_Q14[ 2 ] );
387 LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -3 ], b_Q14[ 3 ] );
388 LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -4 ], b_Q14[ 4 ] );
389 LTP_pred_Q14 = silk_LSHIFT( LTP_pred_Q14, 1 ); /* Q13 -> Q14 */
395 /* Long-term shaping */
397 /* Symmetric, packed FIR coefficients */
398 n_LTP_Q14 = silk_SMULWB( silk_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 );
399 n_LTP_Q14 = silk_SMLAWT( n_LTP_Q14, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 );
400 n_LTP_Q14 = silk_SUB_LSHIFT32( LTP_pred_Q14, n_LTP_Q14, 2 ); /* Q12 -> Q14 */
406 for( k = 0; k < nStatesDelayedDecision; k++ ) {
407 /* Delayed decision state */
408 psDD = &psDelDec[ k ];
411 psSS = psSampleState[ k ];
413 /* Generate dither */
414 psDD->Seed = silk_RAND( psDD->Seed );
416 /* Pointer used in short term prediction and shaping */
417 psLPC_Q14 = &psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 + i ];
418 /* Short-term prediction */
419 LPC_pred_Q14 = silk_noise_shape_quantizer_short_prediction(psLPC_Q14, a_Q12, a_Q12_arch, predictLPCOrder, arch);
420 LPC_pred_Q14 = silk_LSHIFT( LPC_pred_Q14, 4 ); /* Q10 -> Q14 */
422 /* Noise shape feedback */
423 silk_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */
424 /* Output of lowpass section */
425 tmp2 = silk_SMLAWB( psDD->Diff_Q14, psDD->sAR2_Q14[ 0 ], warping_Q16 );
426 /* Output of allpass section */
427 tmp1 = silk_SMLAWB( psDD->sAR2_Q14[ 0 ], psDD->sAR2_Q14[ 1 ] - tmp2, warping_Q16 );
428 psDD->sAR2_Q14[ 0 ] = tmp2;
429 n_AR_Q14 = silk_RSHIFT( shapingLPCOrder, 1 );
430 n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp2, AR_shp_Q13[ 0 ] );
431 /* Loop over allpass sections */
432 for( j = 2; j < shapingLPCOrder; j += 2 ) {
433 /* Output of allpass section */
434 tmp2 = silk_SMLAWB( psDD->sAR2_Q14[ j - 1 ], psDD->sAR2_Q14[ j + 0 ] - tmp1, warping_Q16 );
435 psDD->sAR2_Q14[ j - 1 ] = tmp1;
436 n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp1, AR_shp_Q13[ j - 1 ] );
437 /* Output of allpass section */
438 tmp1 = silk_SMLAWB( psDD->sAR2_Q14[ j + 0 ], psDD->sAR2_Q14[ j + 1 ] - tmp2, warping_Q16 );
439 psDD->sAR2_Q14[ j + 0 ] = tmp2;
440 n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp2, AR_shp_Q13[ j ] );
442 psDD->sAR2_Q14[ shapingLPCOrder - 1 ] = tmp1;
443 n_AR_Q14 = silk_SMLAWB( n_AR_Q14, tmp1, AR_shp_Q13[ shapingLPCOrder - 1 ] );
445 n_AR_Q14 = silk_LSHIFT( n_AR_Q14, 1 ); /* Q11 -> Q12 */
446 n_AR_Q14 = silk_SMLAWB( n_AR_Q14, psDD->LF_AR_Q14, Tilt_Q14 ); /* Q12 */
447 n_AR_Q14 = silk_LSHIFT( n_AR_Q14, 2 ); /* Q12 -> Q14 */
449 n_LF_Q14 = silk_SMULWB( psDD->Shape_Q14[ *smpl_buf_idx ], LF_shp_Q14 ); /* Q12 */
450 n_LF_Q14 = silk_SMLAWT( n_LF_Q14, psDD->LF_AR_Q14, LF_shp_Q14 ); /* Q12 */
451 n_LF_Q14 = silk_LSHIFT( n_LF_Q14, 2 ); /* Q12 -> Q14 */
453 /* Input minus prediction plus noise feedback */
454 /* r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP */
455 tmp1 = silk_ADD32( n_AR_Q14, n_LF_Q14 ); /* Q14 */
456 tmp2 = silk_ADD32( n_LTP_Q14, LPC_pred_Q14 ); /* Q13 */
457 tmp1 = silk_SUB32( tmp2, tmp1 ); /* Q13 */
458 tmp1 = silk_RSHIFT_ROUND( tmp1, 4 ); /* Q10 */
460 r_Q10 = silk_SUB32( x_Q10[ i ], tmp1 ); /* residual error Q10 */
462 /* Flip sign depending on dither */
463 if ( psDD->Seed < 0 ) {
466 r_Q10 = silk_LIMIT_32( r_Q10, -(31 << 10), 30 << 10 );
468 /* Find two quantization level candidates and measure their rate-distortion */
469 q1_Q10 = silk_SUB32( r_Q10, offset_Q10 );
470 q1_Q0 = silk_RSHIFT( q1_Q10, 10 );
471 if (Lambda_Q10 > 2048) {
472 /* For aggressive RDO, the bias becomes more than one pulse. */
473 int rdo_offset = Lambda_Q10/2 - 512;
474 if (q1_Q10 > rdo_offset) {
475 q1_Q0 = silk_RSHIFT( q1_Q10 - rdo_offset, 10 );
476 } else if (q1_Q10 < -rdo_offset) {
477 q1_Q0 = silk_RSHIFT( q1_Q10 + rdo_offset, 10 );
478 } else if (q1_Q10 < 0) {
485 q1_Q10 = silk_SUB32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
486 q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 );
487 q2_Q10 = silk_ADD32( q1_Q10, 1024 );
488 rd1_Q10 = silk_SMULBB( q1_Q10, Lambda_Q10 );
489 rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 );
490 } else if( q1_Q0 == 0 ) {
492 q2_Q10 = silk_ADD32( q1_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
493 rd1_Q10 = silk_SMULBB( q1_Q10, Lambda_Q10 );
494 rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 );
495 } else if( q1_Q0 == -1 ) {
497 q1_Q10 = silk_SUB32( q2_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
498 rd1_Q10 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
499 rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 );
500 } else { /* q1_Q0 < -1 */
501 q1_Q10 = silk_ADD32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
502 q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 );
503 q2_Q10 = silk_ADD32( q1_Q10, 1024 );
504 rd1_Q10 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
505 rd2_Q10 = silk_SMULBB( -q2_Q10, Lambda_Q10 );
507 rr_Q10 = silk_SUB32( r_Q10, q1_Q10 );
508 rd1_Q10 = silk_RSHIFT( silk_SMLABB( rd1_Q10, rr_Q10, rr_Q10 ), 10 );
509 rr_Q10 = silk_SUB32( r_Q10, q2_Q10 );
510 rd2_Q10 = silk_RSHIFT( silk_SMLABB( rd2_Q10, rr_Q10, rr_Q10 ), 10 );
512 if( rd1_Q10 < rd2_Q10 ) {
513 psSS[ 0 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd1_Q10 );
514 psSS[ 1 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd2_Q10 );
515 psSS[ 0 ].Q_Q10 = q1_Q10;
516 psSS[ 1 ].Q_Q10 = q2_Q10;
518 psSS[ 0 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd2_Q10 );
519 psSS[ 1 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd1_Q10 );
520 psSS[ 0 ].Q_Q10 = q2_Q10;
521 psSS[ 1 ].Q_Q10 = q1_Q10;
524 /* Update states for best quantization */
526 /* Quantized excitation */
527 exc_Q14 = silk_LSHIFT32( psSS[ 0 ].Q_Q10, 4 );
528 if ( psDD->Seed < 0 ) {
532 /* Add predictions */
533 LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 );
534 xq_Q14 = silk_ADD32( LPC_exc_Q14, LPC_pred_Q14 );
537 psSS[ 0 ].Diff_Q14 = silk_SUB_LSHIFT32( xq_Q14, x_Q10[ i ], 4 );
538 sLF_AR_shp_Q14 = silk_SUB32( psSS[ 0 ].Diff_Q14, n_AR_Q14 );
539 psSS[ 0 ].sLTP_shp_Q14 = silk_SUB32( sLF_AR_shp_Q14, n_LF_Q14 );
540 psSS[ 0 ].LF_AR_Q14 = sLF_AR_shp_Q14;
541 psSS[ 0 ].LPC_exc_Q14 = LPC_exc_Q14;
542 psSS[ 0 ].xq_Q14 = xq_Q14;
544 /* Update states for second best quantization */
546 /* Quantized excitation */
547 exc_Q14 = silk_LSHIFT32( psSS[ 1 ].Q_Q10, 4 );
548 if ( psDD->Seed < 0 ) {
552 /* Add predictions */
553 LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 );
554 xq_Q14 = silk_ADD32( LPC_exc_Q14, LPC_pred_Q14 );
557 psSS[ 1 ].Diff_Q14 = silk_SUB_LSHIFT32( xq_Q14, x_Q10[ i ], 4 );
558 sLF_AR_shp_Q14 = silk_SUB32( psSS[ 1 ].Diff_Q14, n_AR_Q14 );
559 psSS[ 1 ].sLTP_shp_Q14 = silk_SUB32( sLF_AR_shp_Q14, n_LF_Q14 );
560 psSS[ 1 ].LF_AR_Q14 = sLF_AR_shp_Q14;
561 psSS[ 1 ].LPC_exc_Q14 = LPC_exc_Q14;
562 psSS[ 1 ].xq_Q14 = xq_Q14;
565 *smpl_buf_idx = ( *smpl_buf_idx - 1 ) & DECISION_DELAY_MASK; /* Index to newest samples */
566 last_smple_idx = ( *smpl_buf_idx + decisionDelay ) & DECISION_DELAY_MASK; /* Index to decisionDelay old samples */
569 RDmin_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10;
571 for( k = 1; k < nStatesDelayedDecision; k++ ) {
572 if( psSampleState[ k ][ 0 ].RD_Q10 < RDmin_Q10 ) {
573 RDmin_Q10 = psSampleState[ k ][ 0 ].RD_Q10;
578 /* Increase RD values of expired states */
579 Winner_rand_state = psDelDec[ Winner_ind ].RandState[ last_smple_idx ];
580 for( k = 0; k < nStatesDelayedDecision; k++ ) {
581 if( psDelDec[ k ].RandState[ last_smple_idx ] != Winner_rand_state ) {
582 psSampleState[ k ][ 0 ].RD_Q10 = silk_ADD32( psSampleState[ k ][ 0 ].RD_Q10, silk_int32_MAX >> 4 );
583 psSampleState[ k ][ 1 ].RD_Q10 = silk_ADD32( psSampleState[ k ][ 1 ].RD_Q10, silk_int32_MAX >> 4 );
584 silk_assert( psSampleState[ k ][ 0 ].RD_Q10 >= 0 );
588 /* Find worst in first set and best in second set */
589 RDmax_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10;
590 RDmin_Q10 = psSampleState[ 0 ][ 1 ].RD_Q10;
593 for( k = 1; k < nStatesDelayedDecision; k++ ) {
594 /* find worst in first set */
595 if( psSampleState[ k ][ 0 ].RD_Q10 > RDmax_Q10 ) {
596 RDmax_Q10 = psSampleState[ k ][ 0 ].RD_Q10;
599 /* find best in second set */
600 if( psSampleState[ k ][ 1 ].RD_Q10 < RDmin_Q10 ) {
601 RDmin_Q10 = psSampleState[ k ][ 1 ].RD_Q10;
606 /* Replace a state if best from second set outperforms worst in first set */
607 if( RDmin_Q10 < RDmax_Q10 ) {
608 silk_memcpy( ( (opus_int32 *)&psDelDec[ RDmax_ind ] ) + i,
609 ( (opus_int32 *)&psDelDec[ RDmin_ind ] ) + i, sizeof( NSQ_del_dec_struct ) - i * sizeof( opus_int32) );
610 silk_memcpy( &psSampleState[ RDmax_ind ][ 0 ], &psSampleState[ RDmin_ind ][ 1 ], sizeof( NSQ_sample_struct ) );
613 /* Write samples from winner to output and long-term filter states */
614 psDD = &psDelDec[ Winner_ind ];
615 if( subfr > 0 || i >= decisionDelay ) {
616 pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 );
617 xq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND(
618 silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], delayedGain_Q10[ last_smple_idx ] ), 8 ) );
619 NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay ] = psDD->Shape_Q14[ last_smple_idx ];
620 sLTP_Q15[ NSQ->sLTP_buf_idx - decisionDelay ] = psDD->Pred_Q15[ last_smple_idx ];
622 NSQ->sLTP_shp_buf_idx++;
626 for( k = 0; k < nStatesDelayedDecision; k++ ) {
627 psDD = &psDelDec[ k ];
628 psSS = &psSampleState[ k ][ 0 ];
629 psDD->LF_AR_Q14 = psSS->LF_AR_Q14;
630 psDD->Diff_Q14 = psSS->Diff_Q14;
631 psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH + i ] = psSS->xq_Q14;
632 psDD->Xq_Q14[ *smpl_buf_idx ] = psSS->xq_Q14;
633 psDD->Q_Q10[ *smpl_buf_idx ] = psSS->Q_Q10;
634 psDD->Pred_Q15[ *smpl_buf_idx ] = silk_LSHIFT32( psSS->LPC_exc_Q14, 1 );
635 psDD->Shape_Q14[ *smpl_buf_idx ] = psSS->sLTP_shp_Q14;
636 psDD->Seed = silk_ADD32_ovflw( psDD->Seed, silk_RSHIFT_ROUND( psSS->Q_Q10, 10 ) );
637 psDD->RandState[ *smpl_buf_idx ] = psDD->Seed;
638 psDD->RD_Q10 = psSS->RD_Q10;
640 delayedGain_Q10[ *smpl_buf_idx ] = Gain_Q10;
642 /* Update LPC states */
643 for( k = 0; k < nStatesDelayedDecision; k++ ) {
644 psDD = &psDelDec[ k ];
645 silk_memcpy( psDD->sLPC_Q14, &psDD->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
649 #endif /* OVERRIDE_silk_noise_shape_quantizer_del_dec */
651 static OPUS_INLINE void silk_nsq_del_dec_scale_states(
652 const silk_encoder_state *psEncC, /* I Encoder State */
653 silk_nsq_state *NSQ, /* I/O NSQ state */
654 NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
655 const opus_int16 x16[], /* I Input */
656 opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */
657 const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */
658 opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
659 opus_int subfr, /* I Subframe number */
660 opus_int nStatesDelayedDecision, /* I Number of del dec states */
661 const opus_int LTP_scale_Q14, /* I LTP state scaling */
662 const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
663 const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
664 const opus_int signal_type, /* I Signal type */
665 const opus_int decisionDelay /* I Decision delay */
669 opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q26;
670 NSQ_del_dec_struct *psDD;
672 lag = pitchL[ subfr ];
673 inv_gain_Q31 = silk_INVERSE32_varQ( silk_max( Gains_Q16[ subfr ], 1 ), 47 );
674 silk_assert( inv_gain_Q31 != 0 );
677 inv_gain_Q26 = silk_RSHIFT_ROUND( inv_gain_Q31, 5 );
678 for( i = 0; i < psEncC->subfr_length; i++ ) {
679 x_sc_Q10[ i ] = silk_SMULWW( x16[ i ], inv_gain_Q26 );
682 /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */
683 if( NSQ->rewhite_flag ) {
685 /* Do LTP downscaling */
686 inv_gain_Q31 = silk_LSHIFT( silk_SMULWB( inv_gain_Q31, LTP_scale_Q14 ), 2 );
688 for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) {
689 silk_assert( i < MAX_FRAME_LENGTH );
690 sLTP_Q15[ i ] = silk_SMULWB( inv_gain_Q31, sLTP[ i ] );
694 /* Adjust for changing gain */
695 if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) {
696 gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 );
698 /* Scale long-term shaping state */
699 for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i++ ) {
700 NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] );
703 /* Scale long-term prediction state */
704 if( signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0 ) {
705 for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx - decisionDelay; i++ ) {
706 sLTP_Q15[ i ] = silk_SMULWW( gain_adj_Q16, sLTP_Q15[ i ] );
710 for( k = 0; k < nStatesDelayedDecision; k++ ) {
711 psDD = &psDelDec[ k ];
713 /* Scale scalar states */
714 psDD->LF_AR_Q14 = silk_SMULWW( gain_adj_Q16, psDD->LF_AR_Q14 );
715 psDD->Diff_Q14 = silk_SMULWW( gain_adj_Q16, psDD->Diff_Q14 );
717 /* Scale short-term prediction and shaping states */
718 for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) {
719 psDD->sLPC_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->sLPC_Q14[ i ] );
721 for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) {
722 psDD->sAR2_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->sAR2_Q14[ i ] );
724 for( i = 0; i < DECISION_DELAY; i++ ) {
725 psDD->Pred_Q15[ i ] = silk_SMULWW( gain_adj_Q16, psDD->Pred_Q15[ i ] );
726 psDD->Shape_Q14[ i ] = silk_SMULWW( gain_adj_Q16, psDD->Shape_Q14[ i ] );
730 /* Save inverse gain */
731 NSQ->prev_gain_Q16 = Gains_Q16[ subfr ];