Unifying scaling of fixed-point and float FFT
[opus.git] / silk / NLSF_encode.c
1 /***********************************************************************
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 - Redistributions of source code must retain the above copyright notice,
7 this list of conditions and the following disclaimer.
8 - Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the
10 documentation and/or other materials provided with the distribution.
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
12 names of specific contributors, may be used to endorse or promote
13 products derived from this software without specific prior written
14 permission.
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 POSSIBILITY OF SUCH DAMAGE.
26 ***********************************************************************/
27
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "main.h"
33 #include "stack_alloc.h"
34
35 /***********************/
36 /* NLSF vector encoder */
37 /***********************/
38 opus_int32 silk_NLSF_encode(                                    /* O    Returns RD value in Q25                     */
39           opus_int8             *NLSFIndices,                   /* I    Codebook path vector [ LPC_ORDER + 1 ]      */
40           opus_int16            *pNLSF_Q15,                     /* I/O  Quantized NLSF vector [ LPC_ORDER ]         */
41     const silk_NLSF_CB_struct   *psNLSF_CB,                     /* I    Codebook object                             */
42     const opus_int16            *pW_QW,                         /* I    NLSF weight vector [ LPC_ORDER ]            */
43     const opus_int              NLSF_mu_Q20,                    /* I    Rate weight for the RD optimization         */
44     const opus_int              nSurvivors,                     /* I    Max survivors after first stage             */
45     const opus_int              signalType                      /* I    Signal type: 0/1/2                          */
46 )
47 {
48     opus_int         i, s, ind1, bestIndex, prob_Q8, bits_q7;
49     opus_int32       W_tmp_Q9;
50     VARDECL( opus_int32, err_Q26 );
51     VARDECL( opus_int32, RD_Q25 );
52     VARDECL( opus_int, tempIndices1 );
53     VARDECL( opus_int8, tempIndices2 );
54     opus_int16       res_Q15[      MAX_LPC_ORDER ];
55     opus_int16       res_Q10[      MAX_LPC_ORDER ];
56     opus_int16       NLSF_tmp_Q15[ MAX_LPC_ORDER ];
57     opus_int16       W_tmp_QW[     MAX_LPC_ORDER ];
58     opus_int16       W_adj_Q5[     MAX_LPC_ORDER ];
59     opus_uint8       pred_Q8[      MAX_LPC_ORDER ];
60     opus_int16       ec_ix[        MAX_LPC_ORDER ];
61     const opus_uint8 *pCB_element, *iCDF_ptr;
62     SAVE_STACK;
63
64     silk_assert( nSurvivors <= NLSF_VQ_MAX_SURVIVORS );
65     silk_assert( signalType >= 0 && signalType <= 2 );
66     silk_assert( NLSF_mu_Q20 <= 32767 && NLSF_mu_Q20 >= 0 );
67
68     /* NLSF stabilization */
69     silk_NLSF_stabilize( pNLSF_Q15, psNLSF_CB->deltaMin_Q15, psNLSF_CB->order );
70
71     /* First stage: VQ */
72     ALLOC( err_Q26, psNLSF_CB->nVectors, opus_int32 );
73     silk_NLSF_VQ( err_Q26, pNLSF_Q15, psNLSF_CB->CB1_NLSF_Q8, psNLSF_CB->nVectors, psNLSF_CB->order );
74
75     /* Sort the quantization errors */
76     ALLOC( tempIndices1, nSurvivors, opus_int );
77     silk_insertion_sort_increasing( err_Q26, tempIndices1, psNLSF_CB->nVectors, nSurvivors );
78
79     ALLOC( RD_Q25, nSurvivors, opus_int32 );
80     ALLOC( tempIndices2, nSurvivors * MAX_LPC_ORDER, opus_int8 );
81
82     /* Loop over survivors */
83     for( s = 0; s < nSurvivors; s++ ) {
84         ind1 = tempIndices1[ s ];
85
86         /* Residual after first stage */
87         pCB_element = &psNLSF_CB->CB1_NLSF_Q8[ ind1 * psNLSF_CB->order ];
88         for( i = 0; i < psNLSF_CB->order; i++ ) {
89             NLSF_tmp_Q15[ i ] = silk_LSHIFT16( (opus_int16)pCB_element[ i ], 7 );
90             res_Q15[ i ] = pNLSF_Q15[ i ] - NLSF_tmp_Q15[ i ];
91         }
92
93         /* Weights from codebook vector */
94         silk_NLSF_VQ_weights_laroia( W_tmp_QW, NLSF_tmp_Q15, psNLSF_CB->order );
95
96         /* Apply square-rooted weights */
97         for( i = 0; i < psNLSF_CB->order; i++ ) {
98             W_tmp_Q9 = silk_SQRT_APPROX( silk_LSHIFT( (opus_int32)W_tmp_QW[ i ], 18 - NLSF_W_Q ) );
99             res_Q10[ i ] = (opus_int16)silk_RSHIFT( silk_SMULBB( res_Q15[ i ], W_tmp_Q9 ), 14 );
100         }
101
102         /* Modify input weights accordingly */
103         for( i = 0; i < psNLSF_CB->order; i++ ) {
104             W_adj_Q5[ i ] = silk_DIV32_16( silk_LSHIFT( (opus_int32)pW_QW[ i ], 5 ), W_tmp_QW[ i ] );
105         }
106
107         /* Unpack entropy table indices and predictor for current CB1 index */
108         silk_NLSF_unpack( ec_ix, pred_Q8, psNLSF_CB, ind1 );
109
110         /* Trellis quantizer */
111         RD_Q25[ s ] = silk_NLSF_del_dec_quant( &tempIndices2[ s * MAX_LPC_ORDER ], res_Q10, W_adj_Q5, pred_Q8, ec_ix,
112             psNLSF_CB->ec_Rates_Q5, psNLSF_CB->quantStepSize_Q16, psNLSF_CB->invQuantStepSize_Q6, NLSF_mu_Q20, psNLSF_CB->order );
113
114         /* Add rate for first stage */
115         iCDF_ptr = &psNLSF_CB->CB1_iCDF[ ( signalType >> 1 ) * psNLSF_CB->nVectors ];
116         if( ind1 == 0 ) {
117             prob_Q8 = 256 - iCDF_ptr[ ind1 ];
118         } else {
119             prob_Q8 = iCDF_ptr[ ind1 - 1 ] - iCDF_ptr[ ind1 ];
120         }
121         bits_q7 = ( 8 << 7 ) - silk_lin2log( prob_Q8 );
122         RD_Q25[ s ] = silk_SMLABB( RD_Q25[ s ], bits_q7, silk_RSHIFT( NLSF_mu_Q20, 2 ) );
123     }
124
125     /* Find the lowest rate-distortion error */
126     silk_insertion_sort_increasing( RD_Q25, &bestIndex, nSurvivors, 1 );
127
128     NLSFIndices[ 0 ] = (opus_int8)tempIndices1[ bestIndex ];
129     silk_memcpy( &NLSFIndices[ 1 ], &tempIndices2[ bestIndex * MAX_LPC_ORDER ], psNLSF_CB->order * sizeof( opus_int8 ) );
130
131     /* Decode */
132     silk_NLSF_decode( pNLSF_Q15, NLSFIndices, psNLSF_CB );
133
134     RESTORE_STACK;
135     return RD_Q25[ 0 ];
136 }