merge back in the LTP gain safety limiter
[opus.git] / silk / Inlines.h
1 /***********************************************************************
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 - Redistributions of source code must retain the above copyright notice,
7 this list of conditions and the following disclaimer.
8 - Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the
10 documentation and/or other materials provided with the distribution.
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
12 names of specific contributors, may be used to endorse or promote
13 products derived from this software without specific prior written
14 permission.
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 POSSIBILITY OF SUCH DAMAGE.
26 ***********************************************************************/
27
28 /*! \file silk_Inlines.h
29  *  \brief silk_Inlines.h defines OPUS_INLINE signal processing functions.
30  */
31
32 #ifndef SILK_FIX_INLINES_H
33 #define SILK_FIX_INLINES_H
34
35 #ifdef  __cplusplus
36 extern "C"
37 {
38 #endif
39
40 /* count leading zeros of opus_int64 */
41 static OPUS_INLINE opus_int32 silk_CLZ64( opus_int64 in )
42 {
43     opus_int32 in_upper;
44
45     in_upper = (opus_int32)silk_RSHIFT64(in, 32);
46     if (in_upper == 0) {
47         /* Search in the lower 32 bits */
48         return 32 + silk_CLZ32( (opus_int32) in );
49     } else {
50         /* Search in the upper 32 bits */
51         return silk_CLZ32( in_upper );
52     }
53 }
54
55 /* get number of leading zeros and fractional part (the bits right after the leading one */
56 static OPUS_INLINE void silk_CLZ_FRAC(
57     opus_int32 in,            /* I  input                               */
58     opus_int32 *lz,           /* O  number of leading zeros             */
59     opus_int32 *frac_Q7       /* O  the 7 bits right after the leading one */
60 )
61 {
62     opus_int32 lzeros = silk_CLZ32(in);
63
64     * lz = lzeros;
65     * frac_Q7 = silk_ROR32(in, 24 - lzeros) & 0x7f;
66 }
67
68 /* Approximation of square root                                          */
69 /* Accuracy: < +/- 10%  for output values > 15                           */
70 /*           < +/- 2.5% for output values > 120                          */
71 static OPUS_INLINE opus_int32 silk_SQRT_APPROX( opus_int32 x )
72 {
73     opus_int32 y, lz, frac_Q7;
74
75     if( x <= 0 ) {
76         return 0;
77     }
78
79     silk_CLZ_FRAC(x, &lz, &frac_Q7);
80
81     if( lz & 1 ) {
82         y = 32768;
83     } else {
84         y = 46214;        /* 46214 = sqrt(2) * 32768 */
85     }
86
87     /* get scaling right */
88     y >>= silk_RSHIFT(lz, 1);
89
90     /* increment using fractional part of input */
91     y = silk_SMLAWB(y, y, silk_SMULBB(213, frac_Q7));
92
93     return y;
94 }
95
96 /* Divide two int32 values and return result as int32 in a given Q-domain */
97 static OPUS_INLINE opus_int32 silk_DIV32_varQ(   /* O    returns a good approximation of "(a32 << Qres) / b32" */
98     const opus_int32     a32,               /* I    numerator (Q0)                  */
99     const opus_int32     b32,               /* I    denominator (Q0)                */
100     const opus_int       Qres               /* I    Q-domain of result (>= 0)       */
101 )
102 {
103     opus_int   a_headrm, b_headrm, lshift;
104     opus_int32 b32_inv, a32_nrm, b32_nrm, result;
105
106     silk_assert( b32 != 0 );
107     silk_assert( Qres >= 0 );
108
109     /* Compute number of bits head room and normalize inputs */
110     a_headrm = silk_CLZ32( silk_abs(a32) ) - 1;
111     a32_nrm = silk_LSHIFT(a32, a_headrm);                                       /* Q: a_headrm                  */
112     b_headrm = silk_CLZ32( silk_abs(b32) ) - 1;
113     b32_nrm = silk_LSHIFT(b32, b_headrm);                                       /* Q: b_headrm                  */
114
115     /* Inverse of b32, with 14 bits of precision */
116     b32_inv = silk_DIV32_16( silk_int32_MAX >> 2, silk_RSHIFT(b32_nrm, 16) );   /* Q: 29 + 16 - b_headrm        */
117
118     /* First approximation */
119     result = silk_SMULWB(a32_nrm, b32_inv);                                     /* Q: 29 + a_headrm - b_headrm  */
120
121     /* Compute residual by subtracting product of denominator and first approximation */
122     /* It's OK to overflow because the final value of a32_nrm should always be small */
123     a32_nrm = silk_SUB32_ovflw(a32_nrm, silk_LSHIFT_ovflw( silk_SMMUL(b32_nrm, result), 3 ));  /* Q: a_headrm   */
124
125     /* Refinement */
126     result = silk_SMLAWB(result, a32_nrm, b32_inv);                             /* Q: 29 + a_headrm - b_headrm  */
127
128     /* Convert to Qres domain */
129     lshift = 29 + a_headrm - b_headrm - Qres;
130     if( lshift < 0 ) {
131         return silk_LSHIFT_SAT32(result, -lshift);
132     } else {
133         if( lshift < 32){
134             return silk_RSHIFT(result, lshift);
135         } else {
136             /* Avoid undefined result */
137             return 0;
138         }
139     }
140 }
141
142 /* Invert int32 value and return result as int32 in a given Q-domain */
143 static OPUS_INLINE opus_int32 silk_INVERSE32_varQ(   /* O    returns a good approximation of "(1 << Qres) / b32" */
144     const opus_int32     b32,                   /* I    denominator (Q0)                */
145     const opus_int       Qres                   /* I    Q-domain of result (> 0)        */
146 )
147 {
148     opus_int   b_headrm, lshift;
149     opus_int32 b32_inv, b32_nrm, err_Q32, result;
150
151     silk_assert( b32 != 0 );
152     silk_assert( Qres > 0 );
153
154     /* Compute number of bits head room and normalize input */
155     b_headrm = silk_CLZ32( silk_abs(b32) ) - 1;
156     b32_nrm = silk_LSHIFT(b32, b_headrm);                                       /* Q: b_headrm                */
157
158     /* Inverse of b32, with 14 bits of precision */
159     b32_inv = silk_DIV32_16( silk_int32_MAX >> 2, silk_RSHIFT(b32_nrm, 16) );   /* Q: 29 + 16 - b_headrm    */
160
161     /* First approximation */
162     result = silk_LSHIFT(b32_inv, 16);                                          /* Q: 61 - b_headrm            */
163
164     /* Compute residual by subtracting product of denominator and first approximation from one */
165     err_Q32 = silk_LSHIFT( ((opus_int32)1<<29) - silk_SMULWB(b32_nrm, b32_inv), 3 );        /* Q32                        */
166
167     /* Refinement */
168     result = silk_SMLAWW(result, err_Q32, b32_inv);                             /* Q: 61 - b_headrm            */
169
170     /* Convert to Qres domain */
171     lshift = 61 - b_headrm - Qres;
172     if( lshift <= 0 ) {
173         return silk_LSHIFT_SAT32(result, -lshift);
174     } else {
175         if( lshift < 32){
176             return silk_RSHIFT(result, lshift);
177         }else{
178             /* Avoid undefined result */
179             return 0;
180         }
181     }
182 }
183
184 #ifdef  __cplusplus
185 }
186 #endif
187
188 #endif /* SILK_FIX_INLINES_H */