1 /* Copyright (c) 2002-2008 Jean-Marc Valin
2 Copyright (c) 2007-2008 CSIRO
3 Copyright (c) 2007-2009 Xiph.Org Foundation
4 Written by Jean-Marc Valin */
7 @brief Various math functions
10 Redistribution and use in source and binary forms, with or without
11 modification, are permitted provided that the following conditions
14 - Redistributions of source code must retain the above copyright
15 notice, this list of conditions and the following disclaimer.
17 - Redistributions in binary form must reproduce the above copyright
18 notice, this list of conditions and the following disclaimer in the
19 documentation and/or other materials provided with the distribution.
21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
25 CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
28 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
29 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
30 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
31 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 #include "os_support.h"
41 /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
42 #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15)
44 unsigned isqrt32(opus_uint32 _val);
48 #define PI 3.141592653f
49 #define celt_sqrt(x) ((float)sqrt(x))
50 #define celt_rsqrt(x) (1.f/celt_sqrt(x))
51 #define celt_rsqrt_norm(x) (celt_rsqrt(x))
52 #define celt_cos_norm(x) ((float)cos((.5f*PI)*(x)))
53 #define celt_rcp(x) (1.f/(x))
54 #define celt_div(a,b) ((a)/(b))
55 #define frac_div32(a,b) ((float)(a)/(b))
59 /* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127
60 denorm, +/- inf and NaN are *not* handled */
62 /** Base-2 log approximation (log2(x)). */
63 static inline float celt_log2(float x)
72 integer = (in.i>>23)-127;
75 frac = -0.41445418f + frac*(0.95909232f
76 + frac*(-0.33951290f + frac*0.16541097f));
77 return 1+integer+frac;
80 /** Base-2 exponential approximation (2^x). */
81 static inline float celt_exp2(float x)
93 /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */
94 res.f = 0.99992522f + frac * (0.69583354f
95 + frac * (0.22606716f + 0.078024523f*frac));
96 res.i = (res.i + (integer<<23)) & 0x7fffffff;
101 #define celt_log2(x) ((float)(1.442695040888963387*log(x)))
102 #define celt_exp2(x) ((float)exp(0.6931471805599453094*(x)))
109 #include "os_support.h"
111 #ifndef OVERRIDE_CELT_ILOG2
112 /** Integer log in base2. Undefined for zero and negative numbers */
113 static inline opus_int16 celt_ilog2(opus_int32 x)
115 celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers");
120 #ifndef OVERRIDE_CELT_MAXABS16
121 static inline opus_val16 celt_maxabs16(opus_val16 *x, int len)
124 opus_val16 maxval = 0;
126 maxval = MAX16(maxval, ABS16(x[i]));
131 /** Integer log in base2. Defined for zero, but not for negative numbers */
132 static inline opus_int16 celt_zlog2(opus_val32 x)
134 return x <= 0 ? 0 : celt_ilog2(x);
137 opus_val16 celt_rsqrt_norm(opus_val32 x);
139 opus_val32 celt_sqrt(opus_val32 x);
141 opus_val16 celt_cos_norm(opus_val32 x);
143 static inline opus_val16 celt_log2(opus_val32 x)
147 /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605,
148 0.15530808010959576, -0.08556153059057618 */
149 static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401};
153 n = VSHR32(x,i-15)-32768-16384;
154 frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4]))))))));
155 return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT);
168 /** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */
169 static inline opus_val32 celt_exp2(opus_val16 x)
173 integer = SHR16(x,10);
176 else if (integer < -15)
178 frac = SHL16(x-SHL16(integer,10),4);
179 frac = ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac))))));
180 return VSHR32(EXTEND32(frac), -integer-2);
183 opus_val32 celt_rcp(opus_val32 x);
185 #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b))
187 opus_val32 frac_div32(opus_val32 a, opus_val32 b);
194 /* Atan approximation using a 4th order polynomial. Input is in Q15 format
195 and normalized by pi/4. Output is in Q15 format */
196 static inline opus_val16 celt_atan01(opus_val16 x)
198 return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
206 /* atan2() approximation valid for positive input values */
207 static inline opus_val16 celt_atan2p(opus_val16 y, opus_val16 x)
212 arg = celt_div(SHL32(EXTEND32(y),15),x);
215 return SHR16(celt_atan01(EXTRACT16(arg)),1);
218 arg = celt_div(SHL32(EXTEND32(x),15),y);
221 return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1);
225 #endif /* FIXED_POINT */
226 #endif /* MATHOPS_H */